МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «МГТУ»)

«ММРК имени И.И. Месяцева» ФГБОУ ВО «МГТУ»

УТВЕРЖДАЮ Начальник ММРК им И.И. Месяцева

ΦΓΕΟΥ ΒΟ«MITY»

(подпись)

«31 хавгуста 2019 г

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ И ЛАБОРАТОРНЫХ РАБОТ

учебной дисциплины <u>БД.07 Химия</u> программы подготовки специалистов среднего звена (ППССЗ) специальности <u>15.02.06 Монтаж и техническая эксплуатация холодильно-компрессорных машин и</u> установок (по отраслям)

по программе базовой подготовки

форма обучения: очная

Рассмотрено и одобрено на заседании

методической комиссией преподавателей дисциплин общеобразовательной подготовки по специальностям, реализуемым ММРК им. И.И. Месяцева

Председатель МК

Клепнова О.А

Протокол от 29 мая $2019 \ \Gamma$.

Разработано

Федеральным государственным образовательным стандартом среднего (полного) общего образования,

утвержденым приказом Минобрнауки России от 17 мая 2012 г. № 413 с изменениями и дополнениями от 29 июня 2017 №613

Автор (составитель):Панчук З.С. преподаватель «ММРК имени И.И. Месяцева» ФГБОУ ВО «МГТУ» Эксперт (внутренний): Беляева Е.В. специалист по учебно-методической работе «ММРК имени И.И. Месяцева» ФГБОУ ВО «МГТУ»

Лист ознакомления

Должность	Фамилия, имя, отчество	Дата	Подпись
Начальник ОНС	Торопова А.И.		
Начальник ОПР	Мясников С.А.		
Начальник ОСЭ	Кумов М.Г.		
Начальник СТО	Симонишвили Е.Н.		
Председатель МО	Клепцова О.А.		
Преподаватель	Панчук З.С		

С. Лист учета экземпляров

Мосто управления корроктуруомого окраминара	Номер
Место хранения корректируемого экземпляра	экземпляра

D. Лист регистрации изменений

20	Номера листов			Ф. и подпись	Дата	
№ изменения	Измененных	Замененных	Новых	Аннулиро ванных	лица, внесшего изменения	внесения изменений
1	2	3	4	5	6	7
	_		-		•	•
			1			1

Пояснительная записка

Рабочая программа дисциплины «География» разработана в соответствии с федеральным государственным образовательным стандартом среднего (полного) общего образования, утвержденным приказом Минобрнауки России от 17 мая 2012 г. № 413 с изменениями и дополнениями от 29 июня 2017 №613; примерной программой общеобразовательной учебной дисциплины «История» для профессиональных образовательных организаций, одобренной научнометодическим советом федерального государственного автономного учреждениия «Федеральный институт развития образования» (ФГАУ «ФИРО») в качестве примерной программы для реализации основной профессиональной образовательной программы СПО на базе основного общего образования с получением среднего общего образования протокол № 3 от 21 июля 2015 г.

Учебная дисциплина «Химия» входит в состав общего естественно-научного цикла.

Рабочая программа дисциплины «Химия» рассчитана на 117 часа; из них: обязательная аудиторная учебная нагрузка 78 часов, в том числе практических занятий 6 часов, лабораторных занятий 18 часов. На самостоятельную работу отводится 35 часов.

Методологической основой образовательной программы по дисциплине является системно-деятельностный подход. Рабочая программа устанавливает следующие требования к предметным, метапредметным и личностным результатам обучающихся:

- КК 1. Ценностно-смысловые компетенции.
- КК 2. Общекультурные компетенции.
- КК 3. Учебно-познавательные компетенции.
- КК 4. Информационно-коммуникативные компетенции.
- КК 5. Социально-трудовые компетенции.
- КК 6. Компетенции личного совершенствования.

В соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускников по специальностям среднего профессионального образования рабочая программа дисциплины «Химия» предусматривает определенные требования к их знаниям и умениям.

Целью проведения лабораторных работ является закрепление теоретических знаний и приобретение необходимых практических навыков и умений по отдельным темам курса. Наряду с формированием умений и навыков в процессе практических занятий, обогащаются, систематизируются, углубляются и конкретизируются теоретические знания, вырабатывается способность и готовность использовать теоретические знания на практике, развиваются интеллектуальные умения.

Перед проведением практических обучающиеся обязаны проработать занятий соответствующий материал, уяснить занятия, ознакомиться c содержанием цель последовательностью его проведения, правилами техники безопасности, а преподаватель проверить их знания и готовность к выполнению задания. На первом занятии преподаватель даёт указания по оформлению.

Текст работ на практическом занятии обучающиеся должны писать понятным почерком. Схемы, эскизы, таблицы лабораторных работ необходимо выполнять только карандашом и только с помощью чертёжных инструментов.

После каждого практического занятия проводиться зачёт, как правило, на следующем практическом занятии перед выполнением последующей работы. На зачёте обучающийся должен знать теорию по данной теме: пояснить, как проводится расчёт; уметь проанализировать полученные результаты (в соответствии с основными требованиями к знаниям и умениям по данной теме рабочей программ).

№ темы	Наименование темы	Коды КК	Наименование	Количеств
п/п			лабораторной и	о часов
			практической работы	
1	2	3	4	5
Тема 1.5	Растворы. Теория	KK. 1, KK	Лабораторная работа	
	электролитической	3, KK 4,	№ 1	2
	диссоциации.	KK 6	Свойства, кислот,	2
			оснований, солей	
			Лабораторная работа	
			<u>№</u> 2	2
		1	Гидролиз солей.	
Тема 1.6	Окислительно-	KK. 2, KK	Практическая работа	
	восстановительные	3, KK 6	№1	
	реакции.		Окислительно-	2
			восстановительные	
			реакции	
Тема 1.7	Химия металлов.	KK. 2, KK	Практическая работа	
		3, KK 6	№ 2	2
			Общие свойства	
T 1.0	**	YCYC O YCYC	металлов.	
Тема 1.8	Химия неметаллов	KK. 2, KK	Лабораторная работа	
	элементов.	3, KK 6	<u>№</u> 3	2
			Свойства азотной	
Т 22	П	Tere o Tere	кислоты.	
Тема 2.2	Предельные	KK. 2, KK	Практическое занятие	
	углеводороды.	3, KK 6	№ 3	
			Решение расчетных	
			задач по теме «Углеводороды».	
			Определение	
			молекулярной	2
			формулы	_
			газообразного	
			углеводорода по его	
			плотности и массовой	
			доле химических	
			элементов.	
Тема 2.3	Непредельные	KK. 2, KK	Лабораторная работа	2
	F Tribe			<u> </u>

	углеводороды.	3, KK 6	№ 4:	
	J. J	,	Качественное	
			определение углерода	
			и водорода в	
			органических	
			соединениях.	
Тема 2.4	Циклические и	KK. 2, KK	Лабораторная работа	
	ароматические	3, KK 6	№ 5:	
	углеводороды		Сравнительная	
			характеристика	2
			предельных и	
			непредельных	
			углеводородов.	
Тема 2.5	Спирты фенолы	KK. 2, KK	Лабораторная работа	
		3, KK 6	№ 6	
			Сравнительная	2
			характеристика	
			предельных спиртов.	
Тема 2.6	Альдегиды и кетоны	KK 3, KK	Лабораторная работа	
		4, KK 5	№ 7	2
			Получение и свойства	_
			альдегидов.	
T. 2.7	T	1010 0 1010	Лабораторная работа	
Тема 2.7	Карбоновые кислоты.	KK. 2, KK	<u>№</u> 8	2
		3, KK 6	Свойства карбоновых	
T. 2.0	X7	TCTC 2	кислот.	
Тема 2.8	Углеводы.	KK. 2,	Лабораторная работа	
		KK 3,	№ 9	2
		KK 6	Химические свойства	
ИТОГО			углеводов.	24
итого				24

Раздел 1. Общая и неорганическая химия Тема 5. Теория электролитической диссоциации

Обучающийся должен:

знать:

- теорию электролитической диссоциации Аррениуса;

уметь:

- характеризовать свойства классов неорганических соединений в свете представлений об электролитической диссоциации;
- записывать уравнения реакций ионного обмена.

Лабораторная работа №1

Тема: Свойства кислот, оснований, солей.

Цель: ознакомиться с порядком проведения и характером течения реакций ионного обмена, изучить химические свойства кислот, оснований и солей как электролитов.

Приборы и реактивы: штатив с пробирками, спиртовка, спички, держатель; раствор HCl (1:2), раствор H2SO₄ (1:5), 10%-ный раствор NaOH, Zn (гранулы), Си(стружка), СиО (порошок), 10%-ный раствор Na₂CO₃, 10%-ный раствор BaCl₂.

Теоретическая справка

<u>Кислоты</u> - это электролиты, при диссоциации которых в качестве катиона образуется ион водорода H^+ : $HxA \leftrightarrow xH^+ + A^{x-}$

<u>Основания</u> - это электролиты, при диссоциации которых в качестве аниона образуются гидроксид-ионы OH^- : Me(OH) $п \leftrightarrow Me^{n+}$ + n OH^-

<u>Соли</u> - это электролиты, при диссоциации которых образуются катионы металла и анионы кислотного остатка: (Me)х $A \pi \leftrightarrow x M e^{\pi^+} + \pi A^{x^-}$

- Реакции, протекающие между ионами, называются ионными.
- Реакции обмена между сильными электролитами в растворах протекают до конца, когда ионы соединяются друг с другом и образуют:
 - А) осадок;
 - Б) газ;
 - В) мало диссоциирующее вещество (H₂O)
- Если исходными веществами реакций обмена являются сильные электролиты, которые при взаимодействии не образуют малорастворимых или малодиссоциирующих веществ, то такие реакции не протекают.

Алгоритм составления ионных уравнений реакций

Последовательность действий	Выполнение действий
1. Запишите (составьте) формулы исходных	P P H P
веществ и продуктов реакции. Расставьте	3NaOH + FeCl₃ → Fe(OH)₃ + 3 NaCl-
коэффициенты. С помощью таблицы	молекулярное уравнение реакции
растворимости определите растворимость	
каждого вещества (формулу продукта	
реакции, уходящего из сферы реакции	
отметьте соответствующим знаком: осадок,	
газ)	
2. Напишите под каждой формулой	$3Na^{+}+3OH^{-}+Fe^{3+}+3Cl^{-}$ Fe (OH)3 $+3Na^{+}+3Cl^{-}$
растворимого вещества ионы, на которые	- полное ионное уравнение
оно диссоциирует, учитывая коэффициенты	
и, если необходимо, индексы. Проверьте	
состав и заряды ионов по таблице	
растворимости. Подчеркните формулы	

одинаковых ионов (до и после стрелки),	
которые не учавствуют в реакции.	
3. Выпишите формулы оставшихся ионов и	$Fe^2 + 3OH^ Fe(OH)_3$ _ сокращенное
веществ.	ионное уравнение
4. Объясните сущность реакции (устно)	Реакция идет в направлении связывания
	ионов Fe ³⁺ и 3OH ⁻ в нерастворимое вещество
	Fe(OH) ₃ (гидроксид железа)

Порядок выполнения работы

Выполните опыты. Результаты наблюдений оформите в следующей таблице:

Название опыта	Исходные вещества	Наблюдения	Уравнения реакций в молекулярном и ионном виде	Вывод
1	2	3	4	5

Опыт 1. Химические свойства кислот.

C какими из перечисленных веществ вступает в реакцию соляная кислота: H_2SO_4 ; NaOH; Zn; Cu; CuO; SO_3 ; Na_2CO_3 ?

Проведите возможные реакции. Составьте молекулярные и ионные уравнения. Укажите тип реакции.

Опыт 2. Осуществите переход:

$$Zn \rightarrow ZnSO_4 \rightarrow Zn(OH)_2 \rightarrow ZnCl_2$$

Составьте уравнения проведенных реакций. Назовите все вещества.

Опыт 3. Реакции ионного обмена.

Из выданных реактивов получите возможные соли (не менее 3-х). Составьте уравнения, опишите наблюдения. В выводе укажите:

- При каких условиях возможны реакции ионного обмена;
- Чем обусловлены общие свойства кислот;
- Какие из реакций являются обратимыми, какие необратимы и почему.

Вопросы для самоконтроля

- 1. Какие вещества называются электролитами?
- 2. Что такое электролитическая диссоциация?
- 3. Дайте определение понятий: катион, анион.
- 4. Дайте определения кислот, оснований, средних солей в свете представлений об электролитической диссоциации.
- 5. Какие реакции называются реакциями ионного обмена?
- 6. При каких условиях реакции ионного обмена идут до конца?

Домашнее задание

Выполните следующие задания:

Напишите молекулярные и ионные уравнения реакций между растворами:

- а) нитрата свинца $Pb(N0_3)_2$ и карбоната калия K_2C0_3 ;
- б) гидроксида бария Ва(ОН)2 и фтороводородной кислоты НF;
- в) карбоната натрия Na₃CO₃и хлороводородной кислоты HC1;

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:
- Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» М. Новая волна.

Раздел 1. Общая и неорганическая химия

Тема IV. «Дисперсные системы. Растворы. Процессы, происходящие в растворах.»

Обучающийся должен:

знать:

- понятия рН-раствора, ионного произведения воды, константы диссоциации;
- понятие гидролиз;

уметь:

- составлять уравнения гидролиза;
- определять среду раствора;

Лабораторная работа № 2

Тема: Гидролиз солей

- Цель: 1. Испытайте с помощью индикаторов среды растворов солей.
 - 2. Выполните упражнения по теме «Гидролиз солей».

Приборы и реактивы: индикаторы (лакмусовая бумажка, фенолфталеиновая бумажка), растворы солей (сульфата меди (Π)), карбоната натрия, хлорида натрия); штатив с пробирками.

Теоретическая справка:

Гидролизом соли называется взаимодействие ионов соли с водой, в результате которого образуются слабые электролиты.

- 1. Соли, образованные сильным основанием и слабой кислотой, подвергаются гидролизу по аниону, образуя слабый электролит (кислоту или кислую соль). В растворе увеличивается концентрация свободных гидроксид-ионов ОН. Поэтому раствор соли имеет щелочную реакцию (pH > 7).
- 2. Соли, образованные слабым основанием и сильной кислотой, гидролизуются по катиону, образуя слабый электролит (основание или основную соль). В растворе появляется избыток ионов водорода Н. Среда раствора соли кислая (pH < 7).
- 3. Соли, образованные слабым основанием и слабой кислотой, гидролизуются одновременно и по катиону, и по аниону (полный гидролиз).
- 4. Соли, образованные сильной кислотой и сильным основанием, не гидролизуются, п.ч. катионы и анионы этих солей не связываются с ионами Н или ОН воды, т.е. не образуют с ними молекул слабых электролитов. Среда растворов этих солей нейтральная (рН = 7).

Индикаторами называются вещества, которые обратимо изменяют свой цвет в зависимости от среды растворов, т.е. pH растворов.

Изменение цвета индикаторов в зависимости от среды раствора:

Индикатор	Нейтральная	Кислая	Щелочная
лакмус	фиолетовый	красный	Синий
метилоранж	оранжевый	розовый	желтый
фенолфталеин	бесцветный	бесцветный	малиновый

Алгоритм составления уравнения гидролиза соли:

- 1. Составьте уравнение диссоциации соли, определите ион слабого электролита.
- 2. Составьте уравнение его взаимодействия с водой, определите продукты гидролиза в виде ионов.
- 3. Сделайте вывод о среде электролита.
- 4. Составьте уравнение в молекулярном и ионном виде.

5.
$$AlCl_3 = Al^3 + 3Cl^3$$

$$Al^{3+} + H^{+}OH^{-} = (AlOH)^{2+} + H^{+}$$

Среда кислая, т.к. (H^{+}) (OH)

$$AlCl_3 + HOH + HOH (AlOH)^{2+}Cl_2 + HCl$$

$$Al^3 + 3Cl^- + HOH = (AlOH)^{2+} + H^+$$

$$Al^{3-} + HOH = (AlOH)^{2++} + H^{+}$$

Другой вариант алгоритма составления уравнения гидролиза соли:

- а) по химической формуле соли определите, какой кислотой и каким основанием образована соль;
- б) запишите левую часть уравнения в молекулярном виде;
- в) составьте уравнение в общем ионном виде, предположите согласно этому уравнению, продукты правой части уравнения в молекулярном виде;
- г) сократите одинаковые ионы в левой и правой частях уравнения общего ионного вида:
- д) составьте уравнение гидролиза в кратком виде, определите среду.
- а) Na₂CO₃ соль образована NaOH сильное основание,

 H_2CO_3 – слабая кислота, гидролиз по аниону CO_3^2 ;

$$\delta$$
) Na₂CO₃ + HOH+ NaH CO₃+ NaOH

B)
$$2Na^{+} + CO_{3}^{2-} + H^{+}OH^{-} = HCO_{3}^{-} + 2Na + OH^{-}$$

Предположите продукты правой части уравнения: соль

NaHCO₃ и основание NaOH; запишите в правую часть молекулярного уравнения;

г) составьте краткое ионное уравнение гидролиза, сократите катионы натрия:

$$CO^{2}$$
₃ + HOH= HCO_3 +ON

Вывод: (OH^{-}) (H^{+}) – среда щелочная; рН 7.

Сделайте общий вывод проведенного в начале урока эксперимента: соли подверглись гидролизу, вследствие чего раствор вызвал определенную реакцию среды.

Ход работы:

Часть 1. Проделайте опыты. Результаты оформите в виде таблицы:

Название	Исходные	Наблюдения	Уравнения	Выводы
опыта	вещества		реакций	
			гидролиза в	
			молекулярном и	
			ионном виде	

1		_	4	_
) ')	1 3	Δ	1
1	<u> -</u>	<i>J</i>	T	3

- В выводе объясните, какие процессы происходят при гидролизе солей, образованных:
 - А) слабым основанием и сильной кислотой;
 - Б) сильным основанием и слабой кислотой;
 - В) сильным основанием и сильной кислотой.

Часть 2. Выполните упражнения.

- 1. Составьте полные и сокращенные ионные уравнения гидролиза солей, определите среду раствора:
 - А) бромид калия;
 - Б) нитрат аммония;
 - В) сульфид калия.
- 1. Для создания необходимой для фотографического проявителя щелочной среды в него добавьте соли. Какую из перечисленных солей можно использовать для этой цели: $FeCl_2$; NaBr; K_2CO_3 .

Вопросы для самоконтроля:

- 1. Укажите условия усиления и ослабления гидролиза?
- 2. Каким индикатором можно определить реакции среды растворов солей?
- 3. Благодаря какому аниону в полости рта поддерживается определенная среда?

Домашнее задание.

Самостоятельно разберите гидролиз неорганических соединений стр. 173-174, (конспект в тетрадь).

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:
- Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» М. Новая волна

Раздел 1. Общая и неорганическая химия Тема 4. Окислительно-восстановительные реакции

Обучающийся должен:

знать:

- основные понятия и сущность окислительно-восстановительных реакций;
- правила составления уравнений окислительно- восстановительных реакций методом электронного баланса;

уметь:

- определять и применять понятия степень окисления, окислители и восстановители, процессы окисления и восстановления;
- составлять электронный баланс для окислительно-восстановительных реакций и применять его для расстановки коэффициентов в молекулярном уравнении.

Практическая работа № 1

Тема: Упражнения на расстановку коэффициентов в окислительновосстановительных реакциях методом электронного баланса

- Цель: 1. Изучите теорию окислительно-восстановительных реакций.
- 2.Составьте уравнения окислительно-восстановительных реакций, используя метод электронного баланса.

Оборудование: памятка «Алгоритм составления ОВР методом электронного баланса»; Памятка «Правила определения степени окисления элемента».

Теоретическая справка:

Окислительно-восстановительные реакции (ОВР)- это химические реакции, при протекании которых степени окисления элементов изменяются.

Изменение степеней окисления в ходе OBP обусловлено полным или частичным переходом электронов от атома одного элемента к атомам другого элемента.

- Частицы (атомы, молекулы, ионы), которые отдают электроны, называются восстановителями.
- Процесс отдачи электронов называется окислением. В результате процесса окисления алгебраическая величина степени окисления элемента повышается.
 - Частицы, которые присоединяют электроны, называются окислителями.
- Процесс присоединения электронов называется восстановлением. В результате процесса восстановления алгебраическая величина степени окисления понижается.

Алгоритм составления уравнений	Пример
окислительно-восстановительных	
реакций методом электронного	
баланса	
1. Запишите схему реакции. Определите	
степень окисления атомов до, и после	
реакции. Подчеркните знаки химических	$Na^{\circ} + O_2^{\ 0} \longrightarrow Na_2^{\ +1}O^{-2}$
элементов, которые меняют степень	
окисления.	
2. Составьте электронные уравнения	
(показать процесс отдачи и	
присоединения электронов). Найдите	
наименьшее кратное для чисел 1 и 4	
.Оно равно 4. Определите коэффициенты	восстановитель Na°-le—>Na ⁺¹ 4 процесс окисления
при окислителе и восстановителе.	
Подпишите: окислитель — вос-	окислитель O_2^{0} +4ё —» $2O^{-2}$ 1 процесс восстановления
становитель, процесс окисления и	
восстановления.	
3. Составьте окончательное уравнение	$4\text{Na}^{\circ} + \text{O}_2{}^0$ —»2 Na2^{+1} O^{-2}

Ход работы:

Часть 1. Дайте определения понятиям:

- А) окислительно-восстановительные реакции;
- Б) окисление, восстановление;
- В) окислитель, восстановитель.

Часть 2. Расставьте коэффициенты в уравнениях реакций (приведенных ниже) методом электронного баланса. Укажите, какое вещество окисляется, какое восстанавливается. Что является окислителем и что восстановителем.

Вариант 1

$$1.P + O_2 \rightarrow P_2O_5$$

2.
$$Mg + Cl_2 \rightarrow MgCl_2$$

3.
$$PH_3 + O_2 \rightarrow P2O_5 + H_2O$$

4.
$$NH_3 + 0_2 \rightarrow N_2 + H_2 0$$

5. KClO₃
$$\rightarrow$$
KClO + 0_2

6.
$$H_2S + O_2 \rightarrow S + H_2O$$

7.
$$H_2SO_{4(K)} + Zn \rightarrow ZnSO_4 + SO_2 + H_2O$$

8.
$$HNO_3 + Cu \rightarrow Cu(NO_3)_2 + NO + H_2O$$

9.
$$CIO_2 + Na_2CO_3 \rightarrow NaC1O_2 + NaClO_3 + CO_2$$

10.
$$(NH_4)SO_3 \rightarrow (NH_4)_3\uparrow + H_2S\uparrow$$

Вариант 2.

1.
$$Cu + O_2 \rightarrow CuO$$

2. Fe + Cl₂
$$\rightarrow$$
 FeCl₃

3.
$$CO + 0_2 \rightarrow CO_2$$

4.
$$N_20 + C \rightarrow N_2 + C0_2$$

$$5.\ H_2S+O_2 \rightarrow SO_2+H_2O$$

6.
$$NH_3+O_2 \rightarrow NO + H_2O$$

7. HNO
$$_{3(K)} + Mg \rightarrow Mg(NO_3)_2 + H_2O + NO_2$$

8.
$$HN0_{3(P)}+Ag \rightarrow AgN0_3 + H_2O + NO$$

9.
$$NaCrO_2 + Br_2 + NaOH \rightarrow Na_2CrO_4 + NaBr + H_2O$$

10.
$$Na_2SO_3 + KMnO_4 + H_2O \rightarrow Na_2SO_4 + MnO_2 + KOH$$

Вопросы для самоконтроля:

- 1. Что такое степень окисления?
- 2. Как определяется значение степени окисления?
- 3. Почему металлы в соединениях проявляют только положительные степени окисления, а неметаллы как положительные, так и отрицательные?
- 4. Какие реакции называются окислительно-восстановительными?
- 5. Какие вещества называются окислителями, и какие восстановителями?
- 6. Что такое процесс окисления и процесс восстановления?
- 7. На какие типы делятся все окислительно-восстановительные реакции?

Домашнее задание:

Выполните следующие задания:

1. Определите степень окисления элементов в соединениях:

2. Определите степень окисления каждого элемента, расставьте коэффициенты методом электронного баланса:

B)FeO + A1
$$\longrightarrow$$
 A1₂0₃ + Fe;

r)
$$KI + Cl_2 \longrightarrow KCl + I_2$$
.

Литература:

Основная:

О.С. Габриелян. Химия, 6-ое издание, - М.: Издательский центр «Академия», 2013.

О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.

М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.

О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:

Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» - М. Новая волна.

Раздел 1. Общая и неорганическая химия Тема 6. Химия металлов

Обучающийся должен:

знать:

положение металлов в периодической системе химических элементов Д.И.Менделеева; особенности строения их атомов; состав, свойства, получение и применение важнейших химических соединений металлов;

общие и специфические свойства металлов главных подгрупп I -III групп; свойства представителей металлов побочных подгрупп периодической системы: меди, железа;

понятие о коррозии и способы защиты металлов от коррозии;

уметь:

составлять электронные формулы атомов металлов малых и больших периодов; определять свойства металлов в зависимости от его положения в электрохимическом ряду напряжений; находить сходство и различие в свойствах металлов одной группы; объяснять явление амфотерности на примере оксидов и гидрооксидов железа (III); давать определения и применять понятия - металлическая связь, электрохимический ряд напряжений металлов; применять правила безопасности при работе с неорганическими веществами; выполнять химические опыты, подтверждающие свойства изученных металлов и их важнейших соединений.

Практическая работа № 2

Тема: Общие свойства металлов

Цель: Составьте уравнения химических реакций, подтверждающих общие химические свойства металлов. Рассмотрете эти свойства с т.з. окислительно-восстановительных процессов.

Теоретическая справка:

Общие химические свойства металлов

$$\mathbf{M}$$
 + неметалл \rightarrow бинарное соединение (соль,оксид)

$$+ H_20 \rightarrow Me(OH)_n+H_2$$

$$\rightarrow$$
 Me₂O_n + H₂

$$\mathbf{A}$$
 + кислота \rightarrow соль + \mathbf{H}_2

$$+$$
 соль \rightarrow соль' $+$ Me'

$$_{JI}$$
 + Me $^{\prime}$ $_{2}On \rightarrow$ Me $^{\prime}$ + Me $_{2}Om$

Ход работы:

Вариант № 1.

Часть 1. Общая характеристика металлов.

- 1. Исключите лишний элемент:
- a) Sc; б) Ti; в) As; г) Sn.
- 2. Какая из следующих групп элементов содержит только металлы?
- a) Li; Be; B
- в) H; Li; Na
- б) K; Ca; Sr
- г) Se; Te; Po
- 3. С увеличением порядкового номера элемента в главной подгруппе II группы Периодической системы свойства элементов и образуемых ими простых веществ изменяются следующим образом:

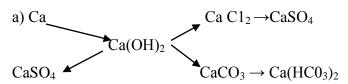
Свойства:

- а) восстановительные свойства;
- б) радиус атома;
- в) электроотрицательность;
- г) число электронов на внешнем уровне;

Изменения:

- 1. усиливаются
- 3. увеличиваются
- 2. уменьшаются
- 4. не изменяются.
- 4. Соотнесите:

Название металла


Число электронов на внешнем уровне

- 1. Франций
- a) 1
- 2. Таллий
- б) 2

- 3. Стронций
- в) 3
- 4. Свинец
- г) 4
- 5. Атом магния имеет электронную формулу:
 - a) $1S^22S^22P^63S^2$
- B) $1S^22S^22P^63P^2$
- б) $1S^{2}2S^{2}$
- Γ) 1S²2S²2P²
- 6.Тип связи в простом веществе меди:
 - а) ковалентная полярная
 - б) ковалентная неполярная;
 - в) ионная;
 - г) металлическая
- 7. Какие физические свойства являются общими для большинства металлов:
- 1) Электропроводность;
- 2) Теплопроводность
- 3) Высокая температура плавления; 4) Металлический блеск
- a) 1,2,3,4
- в) 1,2,4;
- б) 1,3,4
- г) 1,2

Часть II. Химические свойства металлов.

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$\text{6) } Cr_2(SO_4)_3 \rightarrow Cr(OH)_3 \rightarrow Cr_2O_3 \rightarrow Cr \rightarrow CrCL_2 \rightarrow CrCL_3$$

Часть III. Общие способы получения металлов.

Составьте уравнения окислительно-восстановительных реакций получения:

- а) Меди из оксида меди (II) с помощью углерода и оксида углерода (II);
- б) Хрома из оксида хрома (III) с помощью алюминия.

Вариант № 2.

Часть 1. Общая характеристика металлов.

- 1. Какая из следующих групп элементов содержит только металлы?
- a) Ta; I; Aq
- в) Cd; Ir; B

2. В ряду	элементов Ва -	Sr - Ca - Mq наблюдается следующее изменение свойств:
Свойства	:	
1)	восстановител	выные свойства;
2)	число энергет	ических уровней;
3)	электроотрица	ательность;
4)	число валентн	ных электронов;
Изменен	ие:	
а) уменьц	пается	в) не изменяются
б) ослабен	вают;	г) увеличиваются
3. Соотне	сите:	
Название	металла	Число электронов на внешнем уровне
1. Индий		a) 1;
2. Радий		б) 2;
3. Олово		в) 3;
4. Рубиди	ий	г) 4
4. Электр	онная конфигу	рация внешнего энергетического уровня атома свинца:
a) $6S^26P^2$		в) 6P ²
б) 5S ² 5Р ²		г) 6P ⁴
5. Тип свя	язи в простом в	еществе цезии:
а) ковале	нтная полярная	ı;
б) ковале	нтная неполяры	ная;
в) ионная	ι;	
г) металл	ическая	
6. Какое физическое свойство не является общим для всех металлов?		
а)электро	проводность; б	ў)теплопроводность;
в) твердо	е агрегатное со	стояние при нормальных условиях;
г) металл	ический блеск.	
7. Темпер	атура плавлені	ия щелочных металлов с увеличением порядкового номера
элемента:		
а) увелич	ивается;	в) не изменяется
б) уменьц	пается;	г) верного ответа нет.

г) Ga; Xe; Fr

б) W;Nd;Zn

Часть II. Химические свойства металлов.

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$(5)$$
 Cu → Cu(N0₃)₂ → Cu(OH)₂ → CuO → Cu → CuCl₂

$$(5)$$
CuS0₄

Часть III. Общие способы получения металлов.

Составьте уравнения окислительно-восстановительных реакций получения:

- а) Кадмия из оксида кадмия (II) с помощью водорода;
- б) Марганца из оксида марганца (IV) с помощью алюминия.

Вопросы для самоконтроля

- 1. У кажите расположение металлов в периодической системе элементов Д.И. Менделеева.
- 2. Какова сущность металлической связи?
- 3. Какие физические свойства характерны для металлов?
- 4. Какие химические свойства характерны для металлов и как они связаны со строением их атомов? Приведите примеры металлов, которые взаимодействуют с растворами кислот и щелочей. Напишите уравнения соответствующих реакций.
- 5. Как изменяются свойства металлов в ряду стандартных электродных потенциалов? Почему водород помещён в этот ряд?
- 6. Какие из перечисленных металлов будут реагировать с раствором хлороводородной кислоты: марганец, серебро, висмут.

Домашнее задание:

- 1. Рассмотрите генетический ряд металла железа степень окисления +3 и +2.
- 2. Дайте Характеристику генетической связи неорганических веществ.

Литература:

Основная:

О.С. Габриелян. Химия, 6-ое издание, - М.: Издательский центр «Академия», 2013.

О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.

М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам.

M.: «BAKO», 2012.

О.С. Габриелян, Химия 10 кл. М. Дрофа2013

Дополнительная:

Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» - М. Новая волна.

Раздел 1. Общая и неорганическая химия

Тема 7. Химия неметаллических элементов

Обучающийся должен:

знать:

положение неметаллов в периодической системе химических элементов Д.И.Менделеева; особенности строения их атомов; состав, свойства, получение и применение важнейших химических соединений неметаллов;

уметь:

характеризовать общие свойства неметаллов; составлять химические формулы водородных, кислородных соединений, кислот; распознавать хлорид-, сульфат-, фосфат- и карбонат - анионы; выполнять химические опыты, подтверждающие свойства изученных неметаллов и их важнейших соединений; применять правила безопасности при работе с неорганическими веществами.

Лабораторная работа № 3

Тема: Свойства азотной кислоты

Цель: 1. Изучите окислительные свойства азотной кислоты.

2. Исследуйте взаимодействие азотной кислоты с металлами.

Оборудование и реактивы: штатив с пробирками, лакмус, фенолфталеин, растворы: азотной кислоты, гидроксида натрия, карбоната натрия, азотная кислота (к), вода, оксид меди11, цинк, медь.

Теоретическая справка:

Азотная кислота HNO_3 - бесцветная жидкость, имеет резкий запах, легко испаряется, кипит при температуре 83° С. При попадании на кожу может вызвать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой). С водой азотная кислота смешивается в любых соотношениях.

Азотная кислота является одним из сильнейших окислителей, т.к. азот в молекуле HN03 находится в высшей степени окисления +5.

Для азотной кислоты характерны общие свойства кислот, взаимодействие с:

- основными и амфотерными оксидами;
- основаниями;
- солями

Особым свойством азотной кислоты является её взаимодействие с металлами При взаимодействии азотной кислоты с металлами водород не выделяется.

Схема взаимодействия $HN0_3$ различной концентрации с металлами разной активности $Me+HNO_3 \rightarrow Me(NO_3)\pi+H_2O+$ соединение азота (зависит от концентрации кислоты и от активности металла)

	Fe,Cr,AI,Au,Pt,Ir,Ta	С другими	С щелочно-	С щелочно-
		тяжелыми	земельными	земельными
		металлами	металлами	металлами, а
				также с Zn и Fe
НОЗ(конц)	Не действует	NO_2	N_2O	
НОЗ(разб)	Не действует	NO	-	NH ₃ или
				(NH_4NO_3)

Порядок выполнения работы:

Часть 1. Общие свойства.

Опыт 1. В пробирку налейте 0,5 мл азотной кислоты, поместите в раствор кусочек синей лакмусовой бумаги. Запишите наблюдения. Составьте уравнение диссоциации кислоты.

Опыт 2. В пробирку налейте 0,5 мл гидроксида натрия, поместите в раствор кусочек фенолфталеиновой бумаги, добавьте по каплям азотной кислоты до изменения цвета индикатора. Запишите наблюдения. Составьте молекулярные и ионные уравнения реакции.

Опыт 3. К оксиду меди II прилейте 0,5 мл азотной кислоты, через некоторое время наблюдайте появление голубой окраски раствора. Составьте молекулярное и ионное уравнение реакции.

Опыт 4. В пробирку налейте 1-2 мл карбоната натрия, добавьте раствор азотной кислоты. Запишите наблюдения. Составьте молекулярное и ионное уравнения реакции.

В выводе объясните, почему азотная кислота проявляет общие свойства кислот.

Часть 2. Взаимодействие азотной кислоты с металлами.

Опыт 1. К кусочку цинка прилейте 0,5 мл концентрированной азотной кислоты (осторожно!). При появлении бурого газа залейте его водой. Запишите наблюдения. Составьте молекулярные и электронные уравнения реакции.

Опыт 2. Проделайте аналогичные реакции с медью.

В выводе отметьте, в чем отличие азотной кислоты от других кислот. Почему?

Вопросы для самоконтроля:

- 1. С помощью, каких реакций можно различить растворы NaCl, NaBr, Nal?
- 2. Почему ион Ba^{2+} является реагентом на серную кислоту и её соли?
- 3. Каково отношение солей угольной кислоты к действию растворов минеральных кислот? Приведите соответствующие примеры.
- 4. В четырёх пробирках находятся следующие кристаллические вещества: хлорид калия, сульфат калия, фосфат калия и карбонат калия. Определите, в каких пробирках находится каждое из этих веществ.

Домашнее задание:

- 1. Определите степень окисления элемента азота в химических соединениях : оксид азота (II), оксид азота (V) в азотной кислоте.
- 2. Какие реакции характерны для концентрированной азотной кислоты.

Литература:

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. –М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:

Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» - М. Новая волна.

Раздел 2. Органическая химия

Тема: Углеводороды

Обучающийся должен:

знать:

общую формулу алканов; характер связи в их молекулах; понятие гомологов;

правила международной номенклатуры для алканов; свойства, получение и практическое значение алканов;

уметь:

называть алканы по международной номенклатуре; составлять молекулярные и структурные формулы углеводородов и их галогенопроизводных; составлять уравнения химических реакций, подтверждающих свойства предельных углеводородов;

уметь практически определять наличие углерода и водорода в органических веществах; применять правила безопасности при работе с органическими веществами.

Практическая работа № 3

Тема: Решение расчетных задач по теме: Углеводороды

Цель: 1.Обобщите и систематизируйте знания по теме: Углеводороды.

2.Выполните упражнения по данной теме.

Теоретическая справка

Признак	Алканы	Циклоалканы	Алкены	Алкадиены	Алкины	Арены
сравнения						
1.Общая	СпН2п+2	СпН2п	СпН2п	СпН2п-2	СпН2п-2	СпН2п-6
формула						
2.Особенности	Bce	Все связи σ,	Одна	2 двойных	1 тройная	Бензольное
строения	связи σ,	цикл	двойная	связи, цикла	связь,	кольцо
	цикла		связь,	нет	цикла нет	
	нет		цикла			
			нет			

3.Особенности	- ан	Циклоан	-ен	-диен	-ИН	бензол
номенклатуры						
4.виды	Угле	родн	ОΓО	скел	ета	Положения и
изомерии						структуры
			поло	жения	связи	радикалов
		меж	клас	с о в	ая	
		геом	етри	ческая		
5. Важнейшие	Заме	щение	При	соеди	нение	Замещение,
химические						присоединение
свойства	Отще	пление	(-H2)			
			Оки	слен	ие	

Ход работы: Алгоритм для названия вещества по систематической номенклатуре

глеводородов			
непредельных			
Задание: Назовите вещество по			
систематической номенклатуре			
б) CH ₂ = CH - C H - CH - CH ₃ – АЛК <u>ЕН</u> Ы			
CH ₃ CH ₃			
1) Выбирают самую длинную углеродную			
цепь и нумеруют, начиная с того конца, к			
которому ближе двойная связь.			
2) Цифрами указывают положение			
боковых цепей и называют их в			
алфавитном порядке, если боковые цепи			
одинаковые, употребляют части ди - два,			
три - три, тетра - четыре.			
3,4 - диметил			
3) Называют основную цепь исходя из			
количества атомов углерода в ней			
3,4 - диметилпентен - 1			
4) Суффикс -ен показывает на наличие			

наличие одинарных связей в молекуле.	двойной	связи,	цифра	1	-	на	eë
	располож	ение.					

Решение типовой задачи.

Необходимо запомнить следующее:

- 1. Выведите молекулярную формулу вещества это значит установить качественный и количественный состав его молекул.
- 2. Число атомов элемента пропорционально его массе и обратно пропорционально его атомной массе.

Типовая задача. Массовая доля элементов в органическом веществе соответственно равна 0,8182 (или 81,82%) углерода; 0,1818 (или 18,18%) водорода. Относительная его плотность по водороду —22. Выведите формулу вещества.

Решение.

1. Находим относительную молекулярную массу вещества:

$$D(H) = \frac{Mr(seuecmsa)}{Mr(sodopoda)}$$

Отсюда

$$\mathbf{M}_{\scriptscriptstyle \Gamma}$$
 (вещества) = D (H) х $\mathbf{M}_{\scriptscriptstyle \Gamma}$ (водорода)

$$M_r$$
(вещества) = 22 х 2 = 44

2. Находим, сколько массовых частей приходится на углерод:

$$44 \times 0.8182 = 36$$

3. Находим, сколько массовых частей приходится на водород:

$$44 \times 0.1818 = 8$$

4. Находим соотношение атомов в молекуле вещества СхНу

Следовательно, формула органического вещества — C_3H_8 .

Ответ. Формула органического вещества — C₃H₈.

Методика выполнения практического занятия

Вариант 1.

- 1.Составте структурные формулы 3-x изомерных углеводородов, отвечающих составу C_6H_{12} . Назовите их по международной номенклатуре.
 - 2. Составьте структурную формулу углеводорода, название которого:

4,4-диметилпентен-1

3. Какие из веществ, формулы которых приведены ниже, являются гомологами пропена?

A)
$$CH_2=CH_2$$

B)
$$CH_2 = CH - (CH_2)_2 - CH_3$$

$$\Gamma$$
) CH₃ – CH – CH₃

 CH_3

4. Закончите уравнения реакций, назовите полученные вещества:

A)
$$CH_2 = CH - CH_3 + Br_2 \rightarrow$$

Б)
$$CH_2 = CH - CH_3 + H_2O \rightarrow$$

- 5. Приведите уравнения качественной реакции на этен. Укажите признаки реакции.
- 6. Осуществите цепочку превращений:

$$CH_3 - CH_3 \rightarrow CH_2 = CH_2 \rightarrow CH_3 - CH_2 - OH \rightarrow CH_2 = CH_2$$

7.Задача: найдите молекулярную формулу алкена, массовая доля в котором составляет 14,3%. Относительная плотность этого вещества по водороду 21

8. Задача: Из этилового спирта массой 18,4 г по методу Лебедева получили 4 л (н.у.) бутадиена-1,3. Рассчитайте объемную долю выхода продукта.

Вариант 2

1. Составте структурные формулы 3-х изомерных углеводородов, отвечающих составу C4H8. Назовите их по международной номенклатуре.

2.Составьте структурную формулу углеводорода, название которого: 2,3диметилпентен-2

3. Какие из веществ, формулы которых приведены ниже, являются гомологами пентена?

A)
$$CH_3 - CH_2 - CH_2 - CH_3$$

B)
$$CH_2 = CH - (CH_2)_5 - CH_3$$

$$\Gamma$$
) CH₂ = CH – CH – CH₃

 CH_3

4. Закончите уравнения реакций, назовите полученные вещества:

A)
$$CH_2 = CH - CH_2 - CH_2 - CH_3 + HBr \rightarrow$$

$$\text{ F) } \text{CH}_2 = \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 + \text{H}_2 \rightarrow$$

5. Приведите уравнения качественной реакции на бутен. Укажите признаки реакции.

6. Осуществите цепочку превращений:

$$CH_3 - CH_3 \rightarrow CH_3 - CH_2 - CI \rightarrow CH_3 - CH_2 - OH \rightarrow CH_2 = CH_2$$

- 7. Задача: Найдите молекулярную формулу алкина, массовая доля водорода в котором составляет 11,1%. Относительная плотность его по воздуху равна 1,863.
- 8. Задача: Какой объем этилена (н.у.) можно получить из этилового спирта массой 100г, если объемная доля выхода этилена составляет 88%

Вопросы для самоконтроля:

- 1. Что такое алканы? Какова их общая формула?
- 2. Какие вещества называются изомерами?
- 3. Какая изомерия характерна для алканов?
- 4. С какого углеводорода в ряду алканов начинается изомерия?
- 5. Что такое радикал?
- 6. Как дают названия радикалам?
- 7. Какая номенклатура характерна для алканов?
- 8. Какие правила необходимо выполнять, для того чтобы дать название разветвлённому углеводороду?
- 9. В какой последовательности строят названия разветлённого углеводорода?

Домашнее задание:

Выполните следующие задания:

- 1. Напишите структурные формулы:
 - а)2,4 диметилпента;
 - б)3,3 диметилгексана;
 - в)2,3,5 триметилгептана.
- 2. Напишите полуструктурные формулы четырёх изомеров октана $C_8 Hi_8$ и назовите их.

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013

Дополнительная:

Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» - М. Новая волна.

Раздел 2. Органическая химия

Тема: Углеводороды (алкены и алканы)

Обучающийся должен:

знать:

общую формулу алканов; характер связи в их молекулах; понятие гомологов;

правила международной номенклатуры для алканов; свойства, получение и практическое значение алканов;

уметь:

называть алканы по международной номенклатуре; составлять молекулярные и структурные формулы углеводородов и их галогенопроизводных; составлять уравнения химических реакций, подтверждающих свойства предельных углеводородов;

уметь практически определять наличие углерода и водорода в органических веществах; применять правила безопасности при работе с органическими веществами.

Лабораторная работа №4

Тема: Качественное определение углерода и водорода в органических веществах.

Цель: 1.Исследуйте качественный состав парафина.

2.Выполните упражнения по теме: «Предельные углеводороды»

Оборудование и реактивы: лабораторный штатив, держатель для пробирок, пробирки, газоотводная трубка, парафин, оксид меди(II), известковая вода.

Основные понятия:

Органическая химия – это химия углеводородов и их производных.

Углеводороды (УВ) – это простейшие органические вещества, молекулы которых состоят из атомов только двух элементов: С и Н.

Производные УВ – это продукты замещения атомов водорода в молекулах УВ на другие атомы или группы атомов.

Изомеры – это вещества, которые имеют одинаковый состав, но разное строение молекул и различные свойства.

Изомерия – это явление существования изомеров.

Типы изомерии:

- Структурная изомерия изомерия углеродной цепи; изомерия положения кратной связи; изомерия положения функциональной группы.
- Пространственная изомерия (Геометрическая изомерия, цис-, трансизомерия)
 - Межклассовая изомерия.

Функциональные группы – это группы атомов, которые определяют наиболее характерные химические свойства органических соединений.

Углеводородные радикалы – остатки УВ, связанные с функциональными группами.

Гомологи – вещества одного класса, имеющие сходное строение молекул, но отличающиеся на одну или несколько групп – CH2.

СН2 - гомологическая разница.

Порядок выполнения работы:

Часть1. Качественное определение углерода и водорода в парафине.

Опыт: Поместите в пробирку кусочек парафина величиной с горошину. Добавьте примерно такое же количество порошка оксида меди (II). Нагрейте пробирку до плавления парафина и затем содержимое её встряхните, чтобы вещества хорошо перемешались. Закройте пробирку газоотводной трубкой.

Конец газоотводной трубки опустите в пробирку с известковой водой.

Закрепите прибор в лапке штатива. Содержимое пробирки слегка нагрейте и наблюдайте за происходящими изменениями.

Результаты опыта оформите в таблице:

Название	Исходны	Наблюде	Уравнени	Вывод
опыта	е вещества	ния	я реакций	

1	^	2	4	_
I	<i>1.</i>	1 1	4)
•	_		•	

Задания для самостоятельных выводов:

- 1. Что замечаете на стенках пробирки?
- 2. Какие изменения происходят с известковой водой?
- 3. Какие изменения произошли с оксидом меди (II)?
- 4. На основании наблюдений сделайте вывод о качественном составе парафина.

Составьте уравнение реакций: а) горения парафина С14Н30

б) взаимодействия оксида углерода (IV) с известковой водой

Часть2.

- 1.Задача: Выведите молекулярную формулу предельного УВ, содержащегося в парафине если массовая доля углерода в нем 84,96%, а плотность паров его по воздуху 7,79.
- 2.Составьте уравнение реакций окисления УВ, формулу которого вы вывели, оксидом меди(II).
 - 3. Составьте структурные формулы трех изомеров гексана. Дайте им названия.

 4.Назовите вещества:
 CH3

 CH3-CH2-CH-CH2-CH3
 CH3-CH2-CH2-CH3
 CH3-CH2-CH2-CH3

 CH3
 CH3 CH3
 CH3

Вопросы для самоконтроля

- 1. Какие углеводороды называются непредельными и как их подразделяют?
 - а. Напишите общие формулы непредельных углеводородов.
- 2. Какие виды изомерии наблюдаются у непредельных углеводородов?
 - а. Приведите примеры.
- 3. Изобразите сокращённые структурные формулы всех углеводородов, молекулярная формула которых C_5H_{10} . Подпишите под ними названия.
- 4. Почему число изомеров у углеводородов ряда этилена больше, чем у предельных углеводородов? Для доказательства приведите изомеры углеводородов с молекулярными формулами C_4H_{10} и C_4H_8 .
- 5. Какие вещества относятся к углеводородам ряда ацетилена? Даны молекулярные формулы следующих углеводородов: C₂H₂, C₃H₄, C₄H₆. Составьте их структурные формулы и подпишите названия.

Домашнее задание

Выполните следующие задания:

- 1. Напишите структурные формулы соединений по их названиям:
 - а) 3 метилпентен 1;
 - б)3, 4 диметилгептин 1;
 - в) 2 метилгексадиен -1.5.
- 2. Напишите формулы двух изомеров углеродной цепи и двух изомеров положения двойной связи для вещества состава C_8H_{16} . Назовите все вещества по международной

номенклатуре.

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:
- Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» М. Новая волна.

Раздел 2. Органическая химия

Тема: Углеводороды (алкены и алканы)

Обучающийся должен:

знать:

общую формулу алканов; характер связи в их молекулах;

понятие гомологов;

правила международной номенклатуры для алканов; свойства, получение и практическое значение алканов;

уметь:

называть алканы по международной номенклатуре; составлять молекулярные и структурные формулы углеводородов и их галогенопроизводных; составлять уравнения химических реакций, подтверждающих свойства предельных углеводородов;

уметь практически определять наличие углерода и водорода в органических веществах; применять правила безопасности при работе с органическими веществами.

Лабораторная работа №5

Тема: Сравнительная характеристика предельных и непредельных углеводородов

Цель: 1. Изучите свойства гексана и этилена.

2. Сделайте вывод о сходствах и различиях в свойствах предельных и непредельных УВ.

Оборудование и реактивы: раствор гексана, йодная вода, раствор перманганата калия, смесь серной кислоты (к) и этилового спирта.

Штатив с пробирками, зажим для пробирок, стеклянная палочка, газоотводная трубка.

Теоретическая справка

Предельные УВ (алканы) — это нецеклические УВ, в молекулах, которых все атомы углерода находятся в состоянии sp^3 - гибридизации и связаны друг с другом только σ - связями.

Алканы химически малоактивны. Низкая реакционная способность алканов обусловлена очень малой полярностью связей С-С и С-Н в их молекулах, вследствие почти одинаковой электроотрицательности атомов углерода и водорода.

Для алканов наиболее характерны **реакции замещения**. При обычных условиях алканы устойчивы к действию окислителей (КМпО₄, K₂Cr₂O₇).

Алкены — это не циклические УВ, в молекулах, которых два атома углерода находятся в состоянии sp^2 - гибридизации и связаны друг с другом двойной связью (σ и π). Алкены обладают большей реакционной способностью, чем алканы. Это обусловлено наличием в их молекулах двойной связи. π — связь менее прочна чем, σ — связь. Она легко разрушается под воздействием различных реагентов. Освободившиеся в результате разрыва π — связи валентности углеродных атомов используются для присоединения атомов или групп атомов молекул реагента. Для алкенов характерны **реакции присоединения**. **Качественными реакциями** на алкены является их окисление растворами йодной воды и перманганата калия (происходит обесцвечивание этих растворов).

Ход работы:

Часть 1. Свойства предельных углеводородов.

Опыт 1. Горение гексана.

Обмокните стеклянную палочку в гексан и внесите её в пламя спиртовки. Обратите внимание на светящееся пламя. Почему?

- Опыт 2. Взаимодействие гексана с растворами a) Йодной воды, б) Перманганата калия.
 - а) К 1-2 мл гексана добавьте несколько капель йодной воды. Что наблюдаете?
- б) Проделайте аналогичный опыт с раствором КМпО4. Почему не протекает реакция?

Задание

Составьте уравнение реакции хлорирования (2 стадии)

1 вариант - этана

2 вариант – пропана

Укажите тип реакции.

Часть 2. Получение этилена опытным путем.

- 1.В пробирку налейте смесь этилового спирта и серной кислоты (к) (1:3), добавьте песок для равномерного нагревания смеси. Закройте пробирку газоотводной трубкой и закрепите ее в штативе. Осторожно нагрейте.
- 2.В другую пробирку налейте 2-3 мл йодной воды. Опустите газоотводную трубку до дна пробирки с йодной водой и пропустите через нее выделяющийся газ. Обратите внимание на изменение окраски йодной воды.
- 3.В третью пробирку налейте разбавленный раствор КМпО4 и пропустите через него газ. Отметьте изменение окраски раствором.
 - 4. Подожгите выделяющийся газ.

Задание для самостоятельных выводов

- 1. Какой газ выделяется при нагревании этилового спирта с серной кислотой? Составьте уравнение дегидратации этилового спирта.
- 2. Что происходит при пропускании газа через йодную воду и раствор КМпО4? Составьте уравнение реакции: а) Между этиленом и йодной водой (I2)
 - б) Окисление этилена раствором КМпО4.

Укажите тип реакции.

3.Почему этилен горит светящимся пламенем? Составьте уравнение реакции горения этилена.

В выводе к работе сравните свойства предельных и непредельных УВ, объясните причину сходства и различия на основе строения молекул.

Вопросы для самоконтроля:

1. Какие углеводороды называются непредельными и как их подразделяют? Напишите общие формулы непредельных углеводородов.

- 2. Как получают этилен? Напишите уравнения соответствующих реакций.
- 3. Какими химическими свойствами обладает этилен? Напишите уравнения соответствующих реакций.
- 4. Как получают ацетилен в лаборатории и в промышленности? Напишите уравнения соответствующих реакций.
- 5. Чем отличаются по химическим свойствам углеводороды ряда ацетилена: a) от предельных углеводородов; б) от углеводородов ряда этилена? Ответ поясните уравнениями реакций.

Домашнее задание:

- 1. Какие углеводороды называются ароматическими и почему?
- 2. Почему ароматические соединения по химическим свойствам отличаются как от непредельных, так и от предельных углеводородов? Составьте соответствующие уравнения реакций.
- 3. Сравните химические свойства бензола и толуола и поясните сущность взаимного влияния атомов в молекулах.

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:
- Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы»
- М. Новая волна.

Раздел 2. Органическая химия

Тема: Спирты. Фенолы.

Обучающийся должен:

знать:

определение, состав, строение, свойства, применение и получение спиртов и фенолов;

меры по охране окружающей среды от промышленных отходов, содержащих фенол;

о губительном действии на организм человека спиртов;

уметь:

составлять структурные формулы спиртов и фенолов; пользоваться международной номенклатурой; подтверждать уравнениями реакций химические свойства и получение спиртов и фенолов;

определять по характерным реакциям спирты и фенолы; применять правила безопасности с органическими веществами.

Лабораторная работа №6

Тема: Сравнительная характеристика предельных спиртов.

Цель: 1. Изучите и сравнить физические и химические свойства этанола и глицерина.

2. Выполните упражнения по теме: Спирты.

Оборудование и реактивы: пробирки, стеклянная палочка, этанол, глицерин, металлический натрий, растворы гидроксида натрия и сульфата меди (II).

Теоретическая справка

Спирты (алкоголи) – это производные УВ, содержащие в молекуле одну или несколько гидроксильных групп – ОН.

Общая формула спиртов: **R(OH)m, m≥1**, где R- углеводородный радикал, m – число функциональных групп – OH, которое определяет атомность спирта.

Изомерия. Номенклатура.

Характерная изомерия:

- Углеродной цепи
- -Положение функциональной группы ОН
- -Межклассовая (спирты изомерны простым эфирам R O R)

Для многоатомных спиртов характерна качественная реакция с гидроксидом меди (II).

Ход работы:

Выполните опыты. Отчет оформите в виде таблицы:

Название опыта	Исходные	Наблюдения	Уравнения	Вывод
	вещества		реакций	
1	2	3	4	5

Часть1. Одноатомные спирты.

Опыт1. Изучите физические свойства этанола: агрегатное состояние, цвет, запах, плотность, растворимость в воде.

Опыт2. Горение этилового спирта. Смочите стеклянную палочку этанолом, поджечь. Составьте уравнение горения. Записать наблюдения.

Опыт3. Взаимодействие этанола с натрием. К 0,5 мл этанола добавьте кусочек натрия. Запишите наблюдения. Составьте уравнение реакций. Сделайте вывод о свойствах одноатомных спиртов.

Часть2. Многоатомные спирты.

Опыт1. Изучите физические свойства глицерина: агрегатное состояние, цвет, запах, плотность, растворимость в воде. Запишите наблюдения.

Опыт2. Взаимодействие глицерина с натрием. К 0,5 мл глицерина добавьте кусочек натрия. Запишите наблюдения. Составьте уравнение реакции. Сделайте вывод о свойствах многоатомных спиртов.

Опыт3. Проведите качественную реакцию на глицерин. К 1 мл гидроксида натрия добавьте 2-3 капли сульфата меди. К образовавшемуся осадку прилейте несколько капель глицерина. Наблюдайте растворение осадка и образование ярко-синего раствора глицерата меди. Составьте уравнение реакций образования:

- А) гидроксида меди (II)
- Б) глицерата меди.

В выводе к работе отметьте, в чем сходство и различие в свойствах одноатомных и многоатомных спиртов. Почему?

Вопросы для самоконтроля:

- 1. Какие вещества называются спиртами? Приведите примеры одноатомных спиртов.
- 2. Один из атомов водорода в молекулах одноатомных спиртов является более подвижным. Поясните почему?
- 3. Охарактеризуйте химические свойства одноатомных спиртов. Напишите уравнения соответствующих реакций.
- 4. Какие соединения называются многоатомными спиртами? Приведите примеры.
- 5. Охарактеризуйте химические свойства многоатомных спиртов. Напишите уравнения соответствующих реакций и перечислите одинаковые и различные свойства одноатомных и многоатомных спиртов.
- 6. Какие соединения называются фенолами? Приведите примеры.

Домашнее задание:

- 1. Напишите уравнение реакции фенола с гидроксидом натрия.
- 2. Сделайте вывод о свойстве фенола, отличающем его от свойств спиртов.

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:
- Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» М. Новая волна.

Раздел 2. Органическая химия

Тема: Альдегиды и кетоны

Обучающийся должен:

знать:

строение молекул альдегидов и кетонов, их функциональные группы; сходство и различие в свойствах альдегидов и кетонов; о токсичности действия альдегидов и кетонов на живые организмы;

уметь:

составлять структурные формулы альдегидов и кетонов; называть альдегиды по рациональной и международной номенклатуре; составлять уравнения реакций, характеризующих свойства альдегидов; применять правила безопасности при работе с органическими веществами.

Лабораторная работа №7

Тема: Получение и свойства альдегидов

Цель: 1. Получите уксусный альдегид.

- 2. Исследуйте свойства формальдегида.
- 3. Выполните упражнения и сделать вывод о свойствах альдегидов.

Оборудование и реактивы: штатив с пробирками, спиртовка, держатель для пробирок, медная проволока этанол, формалин, раствор гидроксида натрия и сульфата меди (II).

Теоретическая справка

Альдегиды – это органические вещества, молекулы которых содержат альдегидную группу, связанную с углеводородным радикалом.

Изомерия. Номенклатура.

Алкан + аль: HCOH – метаналь (муравьиный альдегид, 40-% раствор – формалин) CH3COH – этаналь (уксусный альдегид, ацетальдегид)

Характерный виды изомерии: - углеродной цепи, межклассовая (кетонам).

Качественные реакции на группу –СОН: а) окисление аммиачным раствором оксида серебра (реакция «серебряного зеркала»); б) окисление гидроксидом меди (II).

Ход работы Выполните опыты. Результаты оформите в виде таблицы:

Название опыта	Исходные	Наблюдения	Уравнения	Вывод
	вещества		реакций	
1	2	3	4	5

Часть 1. Получение альдегидов.

Опыт 1. Окисление этилового спирта оксидом меди (II).

Налейте в пробирку 0,5 мл этилового спирта и погрузите в него раскалённую медную проволоку. Обратите внимание на появление запаха альдегида и восстановление меди.

Задание: 1. Составьте уравнение реакции окисления этилового спирта оксидом меди (II).

- 2. Назовите полученный альдегид.
- 3. Сделайте вывод о возможном способе получения альдегидов.

Часть 2. Свойства альдегидов.

Опыт 2. Окисление муравьиного альдегида оксидом серебра.

В чистую пробирку налейте 0, 5 мл аммиачного раствора оксида серебра. Прибавьте несколько капель формалина. Осторожно нагрейте смесь.

Задание: 1. Напишите уравнение реакции взаимодействия муравьиного альдегида с оксидом серебра.

2. Назовите полученное вещество.

Опыт 3. Окисление альдегида гидроксидом меди (II).

У двум каплям раствора сульфата меди (II) прилейте 1 мл раствора гидроксида натрия. К полученному осадку гидроксида меди прибавьте 0,5 мл формалина. Смесь осторожно нагрейте. Наблюдайте изменение окраски.

Задание: 1. Составьте уравнение реакции получения гидроксида меди (II); взаимодействия гидроксида меди с муравьиным альдегидом.

В выводе укажите какие свойства (окислительные и восстановительные) проявляют альдегиды в данных реакциях и какие вещества являются продуктами.

Упражнения:

- 1. Составьте структурные формулы 3-х изомерных альдегидов $C_5H_{10}O$. Назовите их по международной номенклатуре.
 - 2. Осуществите цепочку превращений:

$$C \rightarrow CH_4 \rightarrow C_2H_2 \rightarrow CH_3COH \rightarrow CH_3COOH$$

3. Задача: Определите массу уксусного альдегида, который получили окислением 391 г этанола, если массовая доля выхода продукта составляет 90% от теоретически возможного.

Вопросы для самоконтроля:

- 1. Какие органические вещества называются альдегидами?
- 2. Как получают альдегиды?
- 3. С помощью каких реактивов можно определить альдегидную группу?
- 4. Какие органические вещества называются кетонами?
- 5. Чем отличаются альдегиды от кетонов? Укажите их важнейшие свойства.
- 6. Как можно локазать. что в ланном растворе содержится кетой? Приведите уравнение соответствующей реакции.

Домашнее задание:

- 1. Напишите уравнение реакции этилового спирта с оксидом меди (II)
- 2. Сделайте вывод об окислении этилового спирта.

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:

Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» - М. Новая волна.

Раздел 2. Органическая химия

Обучающийся должен:

знать:

эмпирические названия изучаемых предельных монокарбоновых кислот; зависимость свойств карбоновых кислот от строения карбоксильной группы и взаимного влияния атомов в молекуле; области применения карбоновых кислот;

уметь:

составлять формулы карбоновых кислот; называть их по международной номенклатуре; составлять уравнения реакций, подтверждающих химические свойства и способы получения карбоновых кислот; определять по характерным признакам карбоновые кислоты; применять правила безопасности при работе с органическими веществами.

Лабораторная работа №8

Тема: Свойства карбоновых кислот

Цель: 1. Изучите общие и специфические свойства уксусной кислоты.

- 2. Сделайте вывод о химических свойствах карбоновых кислот.
- 3. Выполните упражнения.

Оборудование и реактивы: штатив с пробирками, держатель для пробирок, растворы: гидроксида натрия, уксусной кислоты, серной кислоты (к), этилового спирта; оксид кальция, магний (или цинк), карбонат натрия, индикаторы-фенолфталеин, лакмус.

Теоретическая справка

Карбоновые кислоты – производные УВ, содержащие в своём составе одну или несколько карбоксильных групп – СООН.

Изомерия. Номенклатура.

АЛКАН + ОВАЯ: HCOOH – метановая (муравьиная) CH₃COOH – этановая (уксусная)

Виды изомерии: - углеродного скелета;

- межклассовая (со сложными эфирами).

Ход работы:

Выполните опыты. Результаты оформите в виде таблицы:

Название опыта	Исходные вещества	Наблюдения	Уравнения реакций в молекулярном и ионном виде	Вывод
			поштом виде	
1	2	3	4	5

Часть 1. Общие свойства кислот.

Опыт 1. Диссоциация.

Проверить действие уксусной кислоты на индикатор лакмус. Составьте уравнение её диссоциации.

Опыт 2. Взаимодействие со щелочами.

К 1-2 каплям гидроксида натрия добавьте уксусную кислоту до полной нейтрализации. (опыт проводите в присутствии фенолфталеина). Запишите наблюдения. Составьте молекулярное и ионное уравнения реакций.

Опыт 3. Взаимодействие с металлами.

К 2 мл раствора кислоты добавить магний (цинк). Наблюдайте выделение водорода. запишите наблюдения. Составьте молекулярное и ионное уравнение реакции.

Опыт 4. Взаимодействие с оксидами металлов.

В пробирку с небольшим количеством оксида кальция добавить 2 мл кислоты. Запишите наблюдения. Составьте уравнения реакции в молекулярном и ионном виде.

Опыт 5. Взаимодействие с солями.

К 1 мл раствора натрия прилейте 1 мл раствора кислоты. Какой газ выделяется? Составьте молекулярное и ионное уравнения реакции.

Часть 2. Особенности органических кислот.

Опыт 6. Взаимодействие карбоновых кислот со спиртами.

Налейте в пробирку по 2 мл органической кислоты (к), этилового спирта и серной кислоты (к) (осторожно). Содержимое пробирки вылейте в другую пробирку с водой. Через несколько минут на поверхности всплывает уксусно-этиловый эфир, который можно узнать по характерному запаху.

Запишите наблюдения, составьте уравнения реакции этерификации.

В выводе отметьте, почему органические кислоты проявляют черты сходства с неорганическими и в чём их особенность.

Упражнения:

- 1. Составьте 2 изомерных кислоты состава C₄H₈O₂. Назовите их по международной номенклатуре и приведите их тривиальные названия.
 - 2. Закончите уравнения реакций. Назовите полученные вещества:

 $CH_3CH_2COH + O_2 \rightarrow$

CH₃OH + CH₃CH₂COOH →

 $CH_3COOH + CI_2 \rightarrow$

Вопросы для самоконтроля

- 1. Какие соединения относятся к карбоновым кислотам; как их классифицируют? Приведите по одному примеру из каждой группы кислот.
- 2. Поясните сущность взаимного влияния карбоксильной группы и радикала в молекулах карбоновых кислот.
- 3. Какие свойства карбоновых кислот сходны со свойствами неор ганических кислот? Напишите уравнения соответствующих реакций.
- 4. Почему для муравьиной кислоты характерна реакция «серебряного зеркала», а другие карбоновые кислоты не обладают таким свойством. Напишите уравнение соответствующей реакции.

Домашнее задание:

- 1. Как уксусная кислота реагирует с магнием.
- 2. Напишите уравнение реакции уксусной кислоты с металлическим магнием.

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. –М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
 - О.С. Габриелян, Химия 10 кл. М. Дрофа2013

Дополнительная:

Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» - М. Новая волна.

Раздел 2. Органическая химия

Тема: Углеводы

Обучающейся должен:

знать:

строение моносахаридов (глюкозы и фруктозы), дисахаридов (сахарозы), полисахаридов (крахмала и целлюлозы); свойства глюкозы, сахарозы, крахмала, целлюлозы и их приме-

нение;

уметь:

составлять уравнения реакций, характеризующих углеводы; устанавливать взаимосвязь между строением и свойствами углеводов; определять по характерным реакциям углеводы; применять правила безопасности при работе с органическими веществами.

Лабораторная работа № 9

Тема: Химические свойства углеродов

Цель: 1. Изучите химические свойства глюкозы и крахмала.

- 2. Решите качественные задачи на распознание органических веществ.
- 3. Выполните упражнения по теме: Углеводы.

Оборудование и реактивы: растворы глюкозы, сахарозы, гидроксида натрия, сульфата меди (II), аммиачный раствор оксида серебра, крахмальный клейстер, раствор йода.

Теоретическая справка

Углеводы – обширный класс природных соединение, которые играют важную роль в жизни человека, животных и растений.

Простые углеводы (моносахариды) — это простейшие углеводы, не гидролизующиеся с образованием более простых углеводов. Например: глюкоза — $C_6H_{12}O_6$, фруктоза.

Сложные углеводы (полисахариды) — это углеводы, молекулы которых состоят из двух или большего числа остатков моносахаридов и разлагаются а эти моносахариды при гидролизе. Например: сахароза $C_{12}H_{22}O_{11}$ (дисахарид); целлюлоза, крахмал ($C_6H_{10}O_5$) (полисахариды).

Схема гидролиза крахмала:

$$(C_6H_{10}O_5)\Pi - \cdots \rightarrow (C_6H_{10}O_5)X - \cdots \rightarrow (C_{12}H_{22}O_{11}) - \cdots \rightarrow (C_6H_{12}O_6)$$

Крахмал декстрины (х<п) мальтоза глюкоза

Условия реакции: действие воды и ферментов.

Ход работы: выполните опыты. Результаты оформите в виде таблицы:

Название опыта	Исходные	Наблюдения	Уравнения	Вывод
	вещества		реакций	
1	2	3	4	5

Часть 1. Моносахариды.

Опыт 1. Окисление глюкозы аммиачным раствором оксида серебра.

К раствору оксида серебра прилейте 5-6 капель глюкозы и равномерно нагреть. Что наблюдаете? Какие свойства глюкозы это доказывает?

Составьте уравнение реакции взаимодействия глюкозы с оксидом серебра.

Опыт 2. Окисление глюкозы гидроксидом меди (II).

В пробирку с 1-2 мл гидроксида натрия прилить 2 капли сульфата меди. Что образуется? К полученному осадку прилейте равный объём раствора глюкозы и равномерно нагрейте смесь.

Составьте уравнение реакции взаимодействии гидроксида меди (II), с глюкозой. Отметьте какие свойства глюкозы доказывает эта реакция.

Часть 2. Полисахариды.

Опыт 1. Качественная реакция на крахмал (взаимодействие крахмального клейстера с йодом). Опишите наблюдения.

Опыт 2. Гидролиз крахмала: прилейте к небольшому количеству клейстера 7-10 капель серной кислоты (к). Полученный раствор кипятите и через минуту испытайте действием на йод. Для реакции взять 2-3 капли раствора и действуйте 1-2 каплями йодной воды. Почему после кипячения крахмала синяя окраска при действии на него йодом не появляется? Составьте уравнение гидролиза крахмала.

Опыт 3. Приготовьте 1-2 мл гидроксида меди. Добавьте такое же количество раствора сахарозы. Что доказывает растворение гидроксида меди в растворе сахарозы? Нагрейте полученный раствор. Почему не происходит восстановление меди?

Часть 3. Распознайте вещества с помощью качественных реакций: глюкоза, глицерин, крахмал.

Вопросы дли самоконтроля

- 1. Какие вещества относятся к углеводам, и почему им было дано такое название?
- 2. Как классифицируют углеводы и почему?

- 3. Как опытным путём можно доказать, что в молекуле глюкозы имеются пять гидроксильных групп и альдегидная группа?
- 4. Какие химические свойства для глюкозы и глицерина являются общими, и чем эти вещества отличаются друг от друга? Напишите уравнения соответствующих реакций.
- 5. Какое общее химическое свойство присуще дисахарозам и полисахарозам? Какие индивидуальные реакции характерны для крахмала и глюкозы?

Домашнее задание:

1. Почему при продувания воздуха через раствор сахарата кальция в начале образовался осадок, а затем растворился.

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия»,2013. О.С. Габриелян. Химия 11 класс. Базовый уровень. –М.: ДРОФА, 2013. М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:
- Γ .П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы»
- М. Новая волна.

Приложение

Техника выполнения лабораторных работ и техника безопасности

В лабораторных работах используются едкие, агрессивные и ядовитые вещества. Поэтому работа в химической лаборатории безопасна лишь при строгом соблюдении общих правил и требований техники безопасности.

При выполнении лабораторных работ необходимо соблюдать следующие *общие правила'*.

- 1. Содержать рабочее место в чистоте и порядке.
- 2. Приступать к выполнению опыта лишь тогда, когда уяснены его цель и задачи, когда обдуманы отдельные этапы выполнения опыта.
- 3. Опыты должны выполняться аккуратно. без торопливости, с соблюдением всех требований, содержащихся в методических указаниях.
- 4. В лаборатории необходимо соблюдать тишину, запрещается, есть, пить и заниматься посторонними делами.
- 5. После использования реактива его необходимо сразу ставить в штатив, чтобы не создавать беспорядка на рабочем месте.
 - 6. После окончания работы обязательно вымыть руки.

Среди химических реагентов имеются ядовитые вещества, оказывающие токсическое воздействие на организм человека в целом (мышьяк, сурьма, свинец, ртуть и их соединения, галогены, сероводород, оксид углерода (И), оксиды азота и др.), и агрессивные вещества, оказывающие локальные воздействия на кожу (кислоты и щелочи). При работе с ними необходимо соблюдать следующие правила по технике

безопасности:

- 1. Все опыты с ядовитыми и сильно пахнущими веществами, а также нагревание и выпаривание растворов производить только в вытяжном шкафу.
- 2. Не наклоняться над сосудом с кипящей жидкостью. Нагреваемую пробирку или колбу держать отверстием в сторону, а не к себе или к соседу, так как может произойти выброс жилкости.
- 3. Определять запах вещества следует, не вдыхая пары полной грудью, а направляя их к себе лёгким движением руки.
- 4. Работы с кислотами и шелочами проводить так. чтобы реактивы не попадали на олежду. лицо. руки. Наливая раствор в пробирку, её надо держать на некотором расстоянии от себя.
- 5. При обращении с неизвестными веществами необходимо проявлять повышенную осторожность.
- 6. Необходимо немедленно убрать все пролитое. разбитое и просыпанное на столах или на полу в лаборатории. Если кислота прольется на стол или на пол, её следует нейтрализовать шелочью или солой.
- 7. Набор ядовитых и едких жидкостей в пипетки производить не ртом, а при помощи резиновой груши.
- 8. При измельчении сухих шелочей следует надевать предохранительные очки. Брать твердую шелочь только пинцетом или шипцами.
- 9. Нельзя употреблять для опытов вещества из капельниц, колб и упаковок без этикеток и с неразборчивыми налписями.
- 10. В химической лаборатории имеется аптечка. Надо уметь оказывать первую помощь пострадавшим, когда это необходимо.

Происшествие	Первая помощь	
ОЖОГИ		
Ожоги огнем	и, паром, горячими предметами	
1-й степени (краснота)	Наложить вату, смоченную этиловым спиртом. Повторить смачивание.	
Н-й степени (пузыри)	То же. Обрабатывать 5%-м раствором КМпО или 5%-м раствором танина.	
Ill-й степени (разру- шение тканей)	Покрыть рану стерильной повязкой и вызвать врача.	
Ожоги кислотами,	Промыть ожог большим количеством воды,	
хлором или бромом	затем 5%-м раствором NaHCO.	
Ожоги щелочами	Промыть обильно водой.	
Ожоги глаз При ожоге кислотами промыть раствором NaCO При ожоге щелочами 123. применять 2%-й раствор борной кисл		
ОТРАВЛЕНИЯ		
Попадание едких веществ в рот и пищеварительные органы	При попадании кислот пить кашицу из оксида магния. При попадании щелочей пить раствор лимонной кислоты или очень разбавленной уксусной кислоты.	
Отравление твердыми нпи жидкими веществами	Вызвать рвоту, выпив 1%-й раствор сульфата меди (II) CuSO.	
Отравление газами	Пострадавшего немедленно вывести на свежий воздух.	

- 11. При приготовлении растворов серной кислоты нужно лить её в иоду. а не наоборот так как, вследствие сильного местного разогревания, возможно разбрызгивание концентрированной кислоты. При этом надо пользоваться тонкостенной склянкой или фарфоровой посудой.
 - 12. Никаких вешеств из лаборатории нельзя брать домой.
- 13. Металлическая ртуть и ее пары сильный яд. Поэтому ртуть, пролитая при поломке приборов и термометров. должна быть тшательно собрана. Собирают ртуть с помощью амальгамированных пластинок из меди или белой жести.
 - 14. При порезах стеклом рану нужно продезинфицировать раствором перманганата

калия или спиртом, обработать йодом и перевязать бинтом.

- 15. После оказания первой помощи пострадавшего направить к врачу.
- 16. В целях противопожарной безопасности химическая лаборатория снабжена огнетушителями, ящиками с песком, асбестовыми одеялами. Необходимо знать, где нахолятся противопожарные средства и порядок срочной эвакуации из лаборатории при пожаре.
- 17. Обо всех случаях отклонения от нормального хода лабораторного занятия. угрожающего нарушением настоящих правил. сообщать, прежде всего, преподавателю, дежурному лаборанту или заведующему лабораторией.

Литература:

Основная:

- О.С. Габриелян. Химия, 6-ое издание, М.: Издательский центр «Академия», 2013.
- О.С. Габриелян. Химия 11 класс. Базовый уровень. -М.: ДРОФА, 2013.
- М.Ю. Горковенко Поурочные разработки по химии к учебным комплектам. М.: «ВАКО», 2012.
- О.С. Габриелян, Химия 10 кл. М. Дрофа2013 Дополнительная:
- Г.П. Хомченко, И.Г. Хомченко «Сборник задач по химии для поступающих в вузы» М. Новая волна.