МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

АПАТИТСКИЙ ФИЛИАЛ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ РАБОТ

По дисциплине 51.В.03.03 Электрохимическая кинетика				
указывается цикл (раздел) ОП, к которому относится дисциплина, название дисциплины				
для направления подготовки (специальности) <u>04.03.01 Химия</u> код и наименование направления подготовки (специальности)				
направленность программы (профиль) Неорганическая химия и химия				
координационных соединений				
наименование профиля /специализаций/образовательной программы				
Квалификация выпускника, уровень подготовки				
бакалавр				
(указывается квалификация (степень) выпускника в соответствии с ФГОС ВО)				
Кафедра - разработчик : <u>химии и строительного материаловедения</u> название кафедры - разработчика рабочей программы				
Разработчик(и)В.С. Долматов, доцент, к.х.н.				
ФИО, должность, ученая степень, (звание)				

- 1. **Методические указания** составлены на основе ФГОС ВО по направлению подготовки 04.03.01 Химия, утвержденного приказом Минобразования и науки РФ 17 июля 2017 года, № 671, учебного плана в составе ОП по направлению подготовки 04.03.01 Химия, профилю «Неорганическая химия и химия координационных соединений».
 - 2. Цели и задачи учебной дисциплины (модуля).

Целью дисциплины (модуля) «Электрохимическая кинетика» является подготовка обучающегося в соответствии с квалификационной характеристикой бакалавра и рабочим учебным планом направления 04.03.01 Химия, что предполагает освоение обучаемыми теоретических знаний в области электрохимии, изучение которой открывает путь к совершенствованию технологии, интенсификации электрохимических производств и улучшению качества продукции.

Задачи дисциплины (модуля):

- усвоение студентами основ строения двойного электрического слоя, электрохимической и диффузионной кинетики, катодного восстановления металлов, процессов анодного окисления и растворения;
- ознакомление с прикладными аспектами электрохимической кинетики: электролизом, химическими источниками тока, защитой металлов от коррозии.
- 3. Планируемые результаты обучения по дисциплине «Электрохимическая кинетика» Результаты формирования компетенций и планируемые результаты обучения представлены в таблице 1.

Таблица 1 – Планируемые результаты обучения

№	Код компетенции	Компоненты				
п/п		компетенции, степень их	Результаты обучения			
		реализации				
1.	ПК-1-н. Способен выбирать и использовать технические средства и методы испытаний для решения исследовательских задач химической направленности, поставленных специалистом более высокой квалификации	Компоненты компетенции соотносятся с содержанием дисциплины и компетенция реализуется полностью	Знать: основы электрохимической кинетики Уметь: выбирать и использовать технические средства и методы испытаний Владеть: навыками обработки полученных в результате эксперимента данных Индикаторы сформированности компетенций в реализуемой части: ПК-1-н-1. Планирует отдельные стадии исследования при наличии общего плана НИР ПК-1-н-2. Готовит элементы документации, проекты планов и программ отдельных этапов НИР ПК-1-н-3. Выбирает технические средства и методы испытаний (из набора имеющихся) для решения поставленных задач НИР ПК-1-н-4. Готовит объекты исследования			

Таблица 2 - Перечень практических работ

<u>№</u> ПЗ	Наименование тем, их содержание	Кол-во часов	№ темы по табл.4 РП
1	2	3	4
1.	Предмет электрохимической кинетики. Двойной электрический слой. Строение двойного электрического слоя. Поляризуемые и неполяризуемые электроды.	1	1-2
2.	Электрокапиллярные явления. Емкость двойного электрического слоя. Электрокапиллярные явления на твердых электродах. Влияние адсорбции на электрокапиллярную кривую. Потенциал точки нулевого заряда. Электрокинетические явления.	2	3-5
3.	Скорость электрохимической реакции. Кинетический вывод выражения для равновесного потенциала. Поляризационные кривые. Уравнение частной поляризационной кривой.		6-7
4.	Зависимость между скоростью электродной реакции и потенциалом вблизи равновесия. Ток обмена. Температурная зависимость скорости электродной реакции и энергия активации.		8-9
5.	Катодное восстановление водорода. Теория замедленной рекомбинации. Теория замедленного разряда. Стадийное протекание электродных реакций.		10
6.	Диффузионная кинетика: характер поляризационной кривой. Скорость диффузии в приэлектродном слое. Предельный ток.	1	11
7.	Катодное восстановление катионов (полная поляризационная кривая). Концентрационная поляризация. Связь между плотностью тока и предельным током. Анодное окисление анионов (полная поляризационная кривая). Анодное растворение металлов.		12-13
8.	Катодное восстановление металлов. Условия возникновения новой фазы. Рост металлического кристалла на катоде. Влияние адсорбции на рост кристалла. Поляризация при катодном восстановлении металла.		14-15
9.	Совместное восстановление катионов. Строение поликристаллического осадка на катоде.	1	16
10.	Течение электролиза. Концентрационная поляризация. Напряжение разложения и химическая поляризация. Остаточный ток. Рассеивающая способность электролита.	1	17

11.	Самопроизвольное	течение	электродных	процессов.	Работа	1	18
	гальванического элемента. Коррозия металлов.						
11	Всего часов:						15

Рекомендации к выполнению практических работ

Практическое задание № 1.

Тема: Предмет электрохимической кинетики. Двойной электрический слой. Строение двойного электрического слоя. Поляризуемые и неполяризуемые электроды.

Методические рекомендации по практической работе:

- 1. Объяснить практическое значение электрохимической кинетики на примере электрометаллургии, гальванотехники, электрохимической энергетики, электрохимического синтеза, электрохимического анализа, защиты от коррозии металлов, очистки сточных вод и водоподготовки, электрохимических процессов при обогащении руд.
- 2. Рассмотреть схему изменения энергии катиона при его переходе с поверхности металла в раствор. Объяснить возникновение скачка потенциала на границе металл электролит.
- 3. Обратить внимание на строение двойного электрического слоя в концентрированных и разбавленных растворах электролитов, знак заряда металла относительно раствора.
- 4. Привести примеры поляризуемых и неполяризуемых электродов и обосновать, какой тип электродов используется для изучения строения и свойств двойного электрического слоя.

Практическое задание № 2.

Тема: Электрокапиллярные явления. Емкость двойного электрического слоя. Электрокапиллярные явления на твердых электродах. Влияние адсорбции на электрокапиллярную кривую. Потенциал точки нулевого заряда. Электрокинетические явления.

Методические рекомендации по практической работе:

- 1. Рассмотреть схему капиллярного электрометра.
- 2. Обратить внимание на вывод адсорбционного уравнения Гиббса и обосновать следующее из него уравнение Липпмана.
- 3. Проанализировать характер электрокапиллярной кривой, изменение плотности заряда.
- 4. Показать связь между интегральной и дифференциальной емкостью двойного электрического слоя. Обосновать изменение емкости двойного слоя с изменением потенциала, минимумы емкости в разбавленных растворах.
- 5. Рассмотреть эквивалентную схему электрического слоя и компенсационный метод
- 6. Обратить внимание на экспериментальное изучение электрокапиллярной кривой по краевому углу смачивания на твердых электродах.
- 7. Охарактеризовать влияние адсорбции поверхностно-активных веществ (молекул, анионов, катионов) на форму электрокапиллярной кривой, объяснить действие поляризации.
- 8. Дать характеристику потенциала точки нулевого заряда. Обратить внимание на равенство разности потенциалов точек нулевых зарядов двух металлов внешней контактной разности потенциалов между ними.
- 9. Обосновать возникновение дзета-потенциала и привести примеры электрокинетических

Практическое задание № 3.

Скорость электрохимической реакции. Кинетический вывод выражения для равновесного потенциала. Поляризационные кривые. Уравнение частной поляризационной кривой.

Методические рекомендации по практической работе:

- 1. Разобрать стадии электродного процесса. Обратить внимание на влияние потенциала на величину энергии активации электрохимической реакции. Обратить внимание на вывод уравнений скорости электрохимических реакций (анодной и катодной).
- 2. Обратить внимание на то, что строение двойного слоя, оказывающее влияние на скорость электродной реакции, не влияет на равновесное значение потенциала.
- 3. Уметь построить поляризационные кривые (частные и суммарную), вывести уравнение частной поляризационной кривой.
- 4. Рассмотреть схему установки для снятия поляризационных кривых.

Практическое задание № 4.

Зависимость между скоростью электродной реакции и потенциалом вблизи равновесия. Ток обмена. Температурная зависимость скорости электродной реакции и энергия активации.

Методические рекомендации по практической работе:

- 1. Вывести уравнение Тафеля. Обратить внимание на то, какие характеристики электродного процесса могут быть определены из углового коэффициента уравнения.
- 2. Рассмотреть особенности поляризационных кривых вблизи равновесного потенциала, охарактеризовать ток обмена.
- 3. Обратить внимание на величины токов обмена для поляризуемых и неполяризуемых электродов, связь токов обмена с активностью (концентрацией) ионов в растворе.
- 4. Вывести связь между идеальной и реальной энергией активации электродной реакции.

Практическое задание № 5.

Катодное восстановление водорода. Теория замедленной рекомбинации. Теория замедленного разряда. Стадийное протекание электродных реакций.

Методические рекомендации по практической работе:

- 1. Показать значение исследований реакции катодного восстановления водорода для развития теории кинетики электродный процессов и практики электрохимических производств.
- 2. Сопоставить достоинства и недостатки теорий замедленной рекомбинации и замедленного разряда.
- 3. Вывести кинетические выражения стадийных реакций с учетом медленной стадии процесса.

Диффузионная кинетика: характер поляризационной кривой. Скорость диффузии в приэлектродном слое. Предельный ток.

Методические рекомендации по практической работе:

- 1. Охарактеризовать основные особенности диффузионной кинетики. Вывести уравнение диффузионного тока.
- 2. Рассмотреть молекулярную и конвективную диффузию.
- 3. Дать характеристику диффузионного и миграционного тока, чисел переноса ионов.
- 4. Определить условия предельного тока.

Практическое задание № 7.

Катодное восстановление катионов (полная поляризационная кривая). Концентрационная поляризация. Связь между плотностью тока и предельным током. Анодное окисление анионов (полная поляризационная кривая). Анодное растворение металлов.

Методические рекомендации по практической работе:

- 1. Вывести уравнение, описывающее весь ход поляризационной кривой от электрохимической до диффузионной кинетики, включая и область предельного тока.
- 2. Дать характеристику концентрационной поляризации.
- 3. Вывести уравнение, связывающее плотность тока с предельным током.
- 4. Вывести уравнение, описывающее анодное окисление анионов в области электрохимической, смешанной и диффузионной кинетики.
- 5. Вывести уравнение описывающее ход полной поляризационной кривой растворения анионов

Практическое задание № 8.

Катодное восстановление металлов. Условия возникновения новой фазы. Рост металлического кристалла на катоде. Влияние адсорбции на рост кристалла. Поляризация при катодном восстановлении металла.

Методические рекомендации по практической работе:

- 1. Рассмотреть условия возникновения новой фазы, в том числе образования металлического зародыша на катоде.
- 2. Представить схему роста кристалла металла на катоде. Выявить связь роста кристалла с условиями электролиза.
- 3. Показать влияние адсорбции поверхностно-активных веществ на рост металлического кристалла.
- 4. Обратить внимание на концентрационную поляризацию при росте кристаллов металла на катоде.

Практическое задание № 9.

Совместное восстановление катионов. Строение поликристаллического осадка на катоде.

Методические рекомендации по практической работе:

- 1. Дать понятие выхода по току. Рассмотреть различные случаи совместного восстановления металла и водорода с помощью схематических поляризационных кривых.
- 2. Привести примеры практического использования различных растворов и режимов электролиза для получения сплавов или чистых катодных осадков.

Практическое задание № 10.

Течение электролиза. Концентрационная поляризация. Напряжение разложения и химическая поляризация. Остаточный ток. Рассеивающая способность электролита.

Методические рекомендации по практической работе:

- 1. Сформулировать основные законы электролиза. Рассмотреть течение электролиза в растворе хлорида меди(II) на медных электродах.
- 2. Рассмотреть течение электролиза в растворе хлорида меди(II) на медных электродах.
- 3. Рассмотреть электролиз раствора сернокислого натрия на платиновых электродах.
- 4. Дать понятия напряжения разложения, химической поляризации, остаточного тока.
- 5. Дать понятие рассеивающей способности электролита. Построить диаграммы для определения коэффициента распределения тока на электродах.

Практическое задание № 11.

Самопроизвольное течение электродных процессов. Работа гальванического элемента. Коррозия металлов.

Методические рекомендации по практической работе:

- 1. Рассмотреть работу гальванического элемента при помощи поляризационных диаграмм.
- 2. Рассмотреть электрохимическую коррозию металлов с помощью сопряженных поляризационных кривых окисления металла и восстановления окислителей. Показать способы защиты металлов от коррозии.

Список рекомендуемой литературы

№ π\π	Название учебников, учебных пособий и других источников	Авторы (под ред.)	Издательство	Год издания			
1	2	3	4	5			
	Основная:						
1.	Электрохимия: учебное пособие https://e.lanbook.com/reader/book/58166/#1	Дамаскин Б.Б., Петрий О.А., Цирлина Г.А.	Санкт- Петербург: Лань,	2015			
3.	Коррозия и защита от коррозии http://www.studentlibrary.r u/book/ISBN97859221123 45.html?SSr=460134171c0 95399b2bf518	Семенова И.В., Флорианович Г.М., Хорошилов А.В.	М.: Физматлит	2010			
		Дополнительная:					
1.	Физическая и коллоидная химия. Практикум: учебное пособие https://e.lanbook.com/reader/book/5246/#1	П.М. Кругляков, А.В. Нуштаева, Н.Г. Вилкова, Н.В. Кошева.	Санкт- Петербург : Лань	2013			
2.	Физические методы в исследованиях осаждения и коррозии металлов http://biblioclub.ru/index.ph p?page=book_red&id=4282 89&sr=1	С.С. Виноградова, Р.А. Кайдриков, А.Н. Макарова, Б.Л. Журавлев	Казань : Издательство КНИТУ	2014			
3.	Практикум по теоретической	Хейфец, В.Л.	Изд-во Ленингр. ун-та,	1954			