МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра ЦТМ и Э

Методические указания

к выполнению контрольной работы по темам «Элементы линейной алгебры. Дифференциальное и интегральное исчисления функции одной переменной. Дифференциальные уравнения» для обучающихся заочной формы обучения направлений подготовки

естественно-технологического института

Мурманск 2021 г.

Оглавление

ВВЕДЕНИЕ	3
СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМАМ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ	
АЛГЕБРЫ»	5
АЛГЕБРЫ» СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИ	ИЙ»
СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНОЕ	
ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ»	.21
СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «КОМПЛЕКСНЫЕ ЧИСЛА»	.27
СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИ	Œ
ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ»	.30
СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ	
УРАВНЕНИЯ»	.36
УРАВНЕНИЯ»ПРИМЕРНЫЙ ВАРИАНТ И ОБРАЗЕЦ ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ	
РАБОТЫ	.48
ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ	.63
СПИСОК ЛИТЕРАТУРЫ	.71

ВВЕДЕНИЕ

Основной формой работы обучающихся заочно является самостоятельная изучение учебного материала: чтение учебников, решение типовых задач с проверкой правильности решения, выполнение контрольных работ.

В настоящем пособии содержатся список рекомендуемой литературы, методические указания к изучению теоретического материала и рекомендации по выполнению контрольной работы по темам «Элементы линейной алгебры. Дифференциальное и интегральное исчисления функций одной переменной. Дифференциальные уравнения.»

В результате изучения этих тем обучающиеся должны:

- ознакомиться с основами линейной алгебры (действия над матрицами, вычисление определителей), научиться решать системы линейных алгебраических уравнений методом Крамера и при помощи обратной матрицы;
- владеть понятиями функции, сложной и обратной функций, знать свойства основных элементарных функций, уметь определять их основные характеристики по графикам функций;
 - знать определения предела функции и предела последовательности;
- уметь вычислять пределы, раскрывать неопределенности и анализировать полученный результат с точки зрения определения предела;
- уметь исследовать функции на непрерывность, определять точки разрыва функции и устанавливать тип разрыва;
- владеть основными понятиями дифференциального исчисления (производная и ее геометрический смысл, дифференциал), уметь находить производные функций, заданных явно, неявно или параметрически;
- иметь навыки решения основных задач с использованием производных: геометрические задачи на касательную и нормаль и пр.;

- знать приемы исследования функций с помощью производной.
- знать, что такое мнимая единица и комплексное число, уметь производить операции над комплексными числами в алгебраической и тригонометрической формах; уметь решать простейшие алгебраические уравнения на множестве комплексных чисел;
 - изучить основные методы интегрирования;
- получить представление об определенном интеграле и его свойствах, научиться вычислять его по формуле Ньютона–Лейбница;
- научиться исследованию несобственных интегралов первого и второго рода на сходимость и расходимость;
- научиться использовать определенный интеграл для решения геометрических задач, таких как вычисление площади плоской фигуры, объема тела вращения, длины дуги плоской кривой.
- знать основные понятия теории дифференциальных уравнений (порядок дифференциального уравнения, его общее и частное решения, начальные условия и др.) и уметь определять тип дифференциального уравнения;
- знать и уметь использовать методы решения основных типов дифференциальных уравнений 1-го порядка а также дифференциальных уравнений 2-го порядка, допускающих понижение порядка;
- уметь решать линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами и системы линейных дифференциальных уравнений 1-го порядка методом повышения порядка.

Предлагаемое пособие включает варианты контрольной работы для обучающихся заочной формы обучения, а также справочный материал, необходимый для выполнения работы. Кроме того, в пособии содержится решение примерного варианта контрольной работы, в котором имеются ссылки на используемый справочный материал.

СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМАМ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ»

1. Матрицы

Матрицей размерности $m \times n$ называется прямоугольная таблица, состоящая из $m \cdot n$ элементов (m строк и n столбцов):

$$A_{m imes n} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
, где a_{ij} — элементы матрицы,

i = 1, 2, ..., m — номер строки, j = 1, 2, ..., n — номер столбца.

Для краткости матрицу обозначают одной буквой, например, буквой A. Некоторые виды матриц:

- 1) нулевая матрица: матрица, все элементы которой равны нулю;
- 2) при n=1 матрица-столбец: $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$;
- 3) при m = 1 матрица-строка: $Y = (y_1 \ y_2y_n);$
- 4) при m=n квадратная матрица: $A_{n \times n} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$.

У квадратной матрицы различают главную диагональ (соединяющую элементы a_{11} и a_{nn}) и побочную диагональ.

Примеры квадратных матриц:

1) *единичная матрица* (квадратная матрица, на главной диагонали которой стоят единицы, а остальные элементы – нули):

$$E = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & \cdots & \ddots & 0 \\ 0 & \cdots & \cdots & 1 \end{pmatrix};$$

- 2) квадратная матрица второго порядка: $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$;
- 3) квадратная матрица третьего порядка: $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.

Две матрицы A и B называются pавными, если они имеют одинаковые размерности и их соответствующие элементы равны:

$$A_{m \times n} = B_{m \times n} \iff a_{ij} = b_{ij} \ (i = 1, 2, ..., m; \ j = 1, 2, ..., n).$$

2. Линейные операции над матрицами

Умножение матрицы A на число k:

$$B = k \cdot A = \begin{pmatrix} ka_{11} & \cdots & ka_{1n} \\ \cdots & \cdots & \cdots \\ ka_{m1} & \cdots & ka_{mn} \end{pmatrix},$$

или, в краткой записи:

$$B = k \cdot A \iff b_{ij} = k \cdot a_{ij} \ (i = 1, 2, ..., m; \ j = 1, 2, ..., n).$$

Сложение (вычитание) матриц А и В одинаковой размерности:

$$C_{m \times n} = A_{m \times n} \pm B_{m \times n} \iff c_{ij} = a_{ij} \pm b_{ij} \ (i = 1, 2, ..., m; \ j = 1, 2, ..., n).$$

Произведение матриц $A_{m \times n}$ и $B_{n \times k}$:

$$C_{m \times k} = A_{m \times n} \cdot B_{n \times k} \iff$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} \ (i = 1, 2, \dots, m; \ j = 1, 2, \dots, k).$$

Формулу легко запомнить, как правило умножения «строка на столбец»: произведение матриц $A_{m \times n}$ и $B_{n \times k}$ есть матрица $C_{m \times k}$, у которой элемент c_{ij} равен сумме произведений соответствующих элементов i-й строки матрицы A и j-го столбца матрицы B.

Замечание. Перемножать можно только соответственные матрицы A и B, т.е. число столбцов матрицы A должно быть равно числу строк матрицы B.

Если задан многочлен $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$, то матричным многочленом f(A) называется выражение

$$a_0 A^n + a_1 \cdot A^{n-1} + \dots + a_{n-1} A + a_n E$$
,

где A – квадратная матрица, $A^n = \underbrace{A \cdot A ... A}_{n \ pas}$ и E – единичная матрица той же размерности, что и A. Значением матричного многочлена является матрица.

3. Определители

Определитель второго порядка (определитель квадратной матрицы второго порядка):

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{12} a_{21}.$$

Определитель третьего порядка (определитель квадратной матрицы третьего порядка):

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

Для краткости определитель обозначают: |A| или Δ .

Mинором элемента a_{ij} определителя называется определитель, который получается из исходного путем вычеркивания i-й строки и j-го столбца (обозначается M_{ij}).

Алгебраическим дополнением элемента a_{ij} определителя (обозначается A_{ij}) называется число:

$$A_{ij} = (-1)^{i+j} \cdot M_{ij}.$$

Определитель третьего порядка можно вычислить, используя его разложение по 1-й строке:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot (-1)^{1+1} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \cdot (-1)^{1+2} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot (-1)^{1+3} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix},$$

или, в краткой записи: $\det A = a_{_{11}} \cdot A_{_{11}} + a_{_{12}} \cdot A_{_{12}} + a_{_{13}} \cdot A_{_{13}}$,

т.е. определитель равен сумме произведений элементов первой строки на их

алгебраические дополнения. Аналогично можно записать разложение определителя по любой другой строке или столбцу.

4. Решение системы трех линейных алгебраических уравнений с тремя неизвестными методом Крамера

Пусть дана система трех линейных алгебраических уравнений с тремя неизвестными x_1, x_2, x_3 :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3. \end{cases}$$

(коэффициенты a_{ij} и свободные члены b_j для $i=1,2,3,\ j=1,2,3$ считаются заданными).

Тройка чисел x_1^0 , x_2^0 , x_3^0 называется *решением системы*, если в результате подстановки этих чисел вместо x_1 , x_2 , x_3 все три уравнения системы обращаются в тождества.

Составим определитель матрицы A и три вспомогательных определителя:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \quad \Delta_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

Определитель Δ называется *главным определителем системы*. *Вспомо-гательные определители* Δ_1 , Δ_2 и Δ_3 получаются из Δ заменой элементов соответственно первого, второго и третьего столбцов столбцом свободных членов.

Если определитель $\Delta \neq 0$, то существует единственное решение системы и оно выражается формулами:

$$x_1 = \frac{\Delta_1}{\Delta}$$
, $x_2 = \frac{\Delta_2}{\Delta}$, $x_3 = \frac{\Delta_3}{\Delta}$.

Формулы называются формулами Крамера.

СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ»

1. Функции и их свойства

Переменной называют величину $x \in X$, принимающую значения из некоторого множества значений X.

Если каждому значению переменной x из множества X поставлено в соответствие по определенному правилу f единственное значение переменной y из множества Y, то говорят, что задана ϕy нкция y = f(x), определенная на множестве X с множеством значений Y. При этом используют следующие названия:

x — аргумент (независимая переменная);

у – значение функции (зависимая переменная);

X – область определения функции (ООФ);

Y – множество значений функции (ОЗФ).

Функция y = f(x), область определения X которой симметрична относительно начала координат, называется *четной*, если f(-x) = f(x), и называется *нечетной*, если f(-x) = -f(x), $\forall x \in X$.

<u>Примеры</u>. $y = \cos x$ – четная функция, $y = x^3$ – нечетная функция, $y = \sqrt{x}$ – функция общего вида (ни четная, ни нечетная).

Функция y = f(x) называется *периодической*, если существует положительное число T, такое, что f(x+T) = f(x), $\forall x \in X$.

<u>Примеры</u>. $y = tgx - периодическая функция, наименьший период <math>T = \pi$, y = lnx - непериодическая функция.

Значение функции y = f(x) — переменная величина, поэтому можно рассматравать новую функцию с аргументом y: z = g(y), где $z \in Z$,

т. е. функцию z = g(f(x)). Такая функция называется *сложной* функцией от x, или *суперпозицией* функций f и g.

<u>Пример</u>. $z = tg(x^2 + 3x - 1) -$ суперпозиция функций z = tgy и $y = x^2 + 3x - 1$.

Если $\forall y \in Y$ ставится в соответствие единственное значение $x \in X$, такое, что y = f(x), то говорят, что задана функция $x = f^{-1}(y)$, которую называют *обратной* по отношению к функции y = f(x). Функции f и f^{-1} называются взаимно обратными функциями. Если у обратной функции $x = f^{-1}(y)$ обозначить аргумент буквой x, а функцию — буквой y, то графики взаимно обратных функций y = f(x) и $y = f^{-1}(x)$ будут симметричны относительно прямой y = x.

<u>Пример.</u> $y = \lg x$ и $y = 10^x$ – взаимно обратные функции.

Все функции, задаваемые аналитическим способом, можно разбить на два класса: элементарные и неэлементарные. В классе элементарных функций выделяют основные элементарные функции: степенная $(y = x^n)$, показательные $(y = a^x)$, тригонометрические $(y = \sin x, y = \cos x, y = \tan x, y = \cot x)$, а также обратные к ним (логарифмические, обратные тригонометрические и др.). Элементарными называют функции, полученные из основных элементарных функций при помощи конечного числа операций сложения, вычитания, умножения, деления, а также суперпозиции основных элементарных функций. Все остальные функции относятся к неэлементарным. Примеры. $y = \lg(\cos x)$ — элементарная функция, т.к. является суперпозицией

основных элементарных функций $y=\lg x$ и $y=\cos x$; $y=\begin{cases} x^2, & x<0,\\ 1, & x\geq 0 \end{cases}$ — неэлементарная функция.

Нулями функции y = f(x) называют точки x, в которых выполнено равенство f(x) = 0. Нули функции – это абсциссы точек пересечения графика функции с осью Ox.

<u>Пример</u>. У функции $y = \lg(x)$ единственный нуль – точка x = 1.

Функция y = f(x) называется монотонно возрастающей на интервале $x \in (a; b)$, если для любых двух точек x_1 и x_2 этого интервала из неравенства $x_2 > x_1$ следует неравенство $f(x_2) > f(x_1)$, то есть если любому большему значению аргумента из этого интервала соответствует большее значение функции.

Функция y = f(x) называется монотонно убывающей на интервале $x \in (a; b)$, если для любых двух точек x_1 и x_2 этого интервала из неравенства $x_2 > x_1$ следует неравенство $f(x_2) < f(x_1)$.

Промежутки возрастания и убывания функции называются *промежут*ками монотонности функции.

Если функция y = f(x) монотонна на интервале $x \in (a; b)$, то она имеет обратную функцию $y = f^{-1}(x)$.

<u>Пример</u>. Функция $y = \operatorname{tg} x$ монотонна на интервале $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$, ее ОЗФ:

 $y \in (-\infty; \infty)$. Она имеет обратную функцию $y = \arctan x$, определенную на интервале $x \in (-\infty; \infty)$, с ОЗФ: $y \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

Точка x_0 называется *точкой максимума* функции y = f(x), если существует такая двухсторонняя окрестность точки x_0 , что для всякой точки $x \neq x_0$ этой окрестности выполняется неравенство $f(x) < f(x_0)$. При этом число $f(x_0)$ называется *максимумом* функции f(x) и обозначается y_{max} .

Аналогично, если для всякой точки $x \neq x_0$ из некоторой окрестности точки x_0 выполняется неравенство $f(x) > f(x_0)$, то x_0 называется *точкой минимума*, а число $f(x_0) -$ *минимумом* функции f(x) и обозначается y_{min} .

Точки максимумов и минимумов называются *точками* экстремумов функции, а числа y_{max} и y_{min} называются экстремумами функции.

2. Предел функции. Предел последовательности

Пусть функция y = f(x) определена в некоторой окрестности точки x = a, где a – конечная или бесконечно удаленная точка на числовой прямой Ox.

Число A называется конечным пределом функции y = f(x) в точке x = a (или при $x \to a$), если для любого числа $\varepsilon > 0$, сколь малым бы оно ни было, можно указать такую окрестность U(a) точки x = a (не включающую саму точку a), что при всех x, принадлежащих этой окрестности, выполняется неравенство $|f(x) - A| < \varepsilon$.

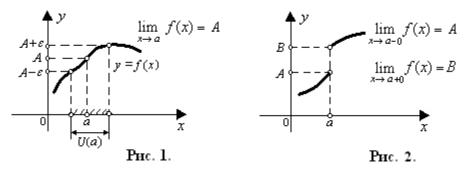
Предел функции обозначается так: $\lim_{x \to a} f(x) = A$, или $f(x) \to A$ при $x \to a$.

Определение конечного предела при $x \to a$ можно записать символически следующим образом:

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0 \ \exists U(a) \ / \ |f(x) - A| < \varepsilon \ \forall x \in U(a), \ x \neq a. \tag{*}$$

Геометрически существование конечного предела $\lim_{x\to a} f(x) = A$ в случае, когда $a \in (-\infty; \infty)$, означает, что значения функции y = f(x) сколь угодно мало отличаются от числа A, если значения аргумента становятся достаточно близкими к точке x = a (рис. 1). При этом в самой точке a функция может быть не определена или определена, но может иметь значение, отличное от A.

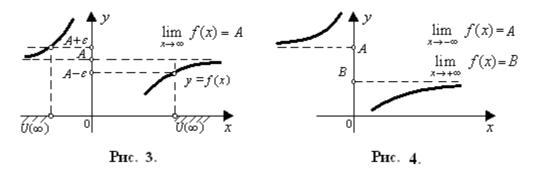
Поведение функции только слева или только справа от точки x=a, т.е. в ее левой или правой окрестности, характеризуется ее *односторонними пределами* (рис. 2): *левосторонний предел* функции обозначается $\lim_{x\to a-0} f(x) = A$, где условие $x\to a-0$ означет, что x остается левее точки a ($x\to a$, x<a); *правосторонний предел* функции обозначается $\lim_{x\to a+0} f(x) = B$, где условие $x\to a+0$ означет, что x остается правее точки a ($x\to a$, x>a).



Существование предела $\lim_{x\to a} f(x) = A$ означает, что существуют оба односторонних предела и они совпадают между собой:

$$\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = A.$$

Если существует конечный предел функции при $x \to \infty$: $\lim_{x \to \infty} f(x) = A$, то в его определении (*) U(a) — это окрестность бесконечно удаленной точки числовой прямой (рис. 3). При этом можно рассматривать односторонние пределы: $\lim_{x \to -\infty} f(x)$ или $\lim_{x \to +\infty} f(x)$ (рис. 4).



 $\mbox{\it Числовую последовательность}\ \left\{ u_n \right\}$ обычно рассматривают как функцию натурального аргумента $n\colon u_n = f(n), \ \forall n \in N$.

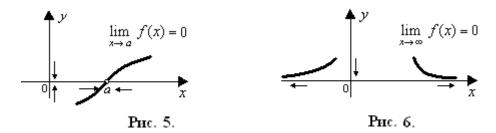
Если существует предел последовательности $\lim_{n\to\infty} u_n = A$, то его определение можно записать символически:

$$\lim_{n\to\infty} u_n = A \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists n_0(\varepsilon) \ / \ \left| u_n - A \right| < \varepsilon \ \forall n > n_0,$$

т.е. члены последовательности $\{u_n\}$ сколь угодно мало отличаются от числа A при достаточно больших номерах n (для $n > n_0$).

3. Бесконечно малые, бесконечно большие и локально ограниченные функции

Функция y = f(x) называется *бесконечно малой* при $x \to a$, если $\lim_{x \to a} f(x) = 0$ (рис. 5, 6).



Две бесконечно малые при $x \to a$ функции f(x) и g(x) называются эквивалентными бесконечно малыми, если $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$.

Основные соотношения эквивалентностей:

$$\sin x \sim x \quad \text{при} \quad x \to 0,$$

$$\arcsin x \sim x \quad \text{при} \quad x \to 0,$$

$$\tan x \sim x \quad \text{при} \quad x \to 0,$$

$$\arctan x \sim x \quad \text{при} \quad x \to 0,$$

$$\ln(1+x) \sim x \quad \text{при} \quad x \to 0,$$

$$a^{x} - 1 \sim x \quad \ln a \quad \text{при} \quad x \to 0,$$

$$e^{x} - 1 \sim x \quad \text{при} \quad x \to 0.$$

Функция y = f(x) называется бесконечно большой при $x \to a$, если для любого числа B > 0, сколь бы большим оно ни было, можно указать такую окрестность U(a) точки x = a (не включающую саму точку a), что при всех x,

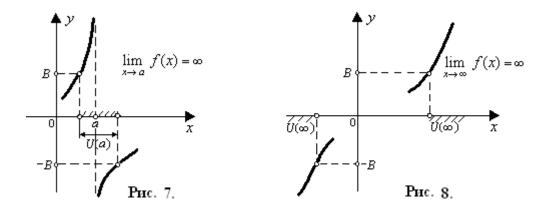
принадлежащих этой окрестности, выполняется неравенство |f(x)| > B.

Предел бесконечно большой функции при $x \to a$ обозначается символом ∞ : $\lim_{x \to a} f(x) = \infty$ и называется бесконечным пределом функции при $x \to a$.

Определение бесконечно большой функции при $x \to a$ можно записать символически следующим образом:

$$\lim_{x \to a} f(x) = \infty \iff \forall B > 0 \ \exists U(a) \ / \ |f(x)| > B \ \forall x \in U(a), x \neq a.$$

Геометрически существование бесконечного предела $\lim_{x\to a} f(x) = \infty$ означает, что значения функции y = f(x) становятся сколь угодно большими по модулю, если значения аргумента достаточно близки к точке x = a (рис. 7, 8).



<u>Пример.</u> $y = \frac{1}{x-1}$ – бесконечно большая функция при $x \to 1$.

Бесконечный предел последовательности $\lim_{n\to\infty}u_n=\infty$ означает, что члены последовательности $\{u_n\}$ становятся сколь угодно большими по модулю при достаточно больших номерах n:

$$\lim_{n\to\infty} u_n = \infty \quad \Leftrightarrow \quad \forall B > 0 \ \exists n_0(\varepsilon) \ / \ |u_n| > B \ \forall n > n_0.$$

Функция y=f(x) называется локально ограниченной в точке x=a, если существует такая окрестность точки U(a), в которой значения функции удовлетворяют неравенству $m \le f(x) \le M$, где m и M – некоторые числа.

Любая функция, имеющая конечный предел при $x \to a$, в том числе и бесконечно малая функция, является локально ограниченной в точке x = a.

Если y = f(x) — бесконечно большая при $x \to a$, то она не является локально ограниченной в точке x = a.

<u>Пример.</u> $y = \frac{1}{x^2 - 1}$ — локально ограниченная функция во всех точках, кроме точек x = 1 и x = -1.

4. Вычисление пределов

При вычислении пределов используют теоремы о конечных пределах и теоремы о бесконечно малых и бесконечно больших функциях.

Основные теоремы о конечных пределах.

- 1. Если f(x) = const (const константа) при $\forall x \in U(a)$, то $\lim_{x \to a} const = const$.
- 2. $\lim_{x \to a} (C \cdot f(x)) = C \cdot \lim_{x \to a} f(x)$, где C = const.
- 3. $\lim_{x\to a} f(x) = f(a)$, если f(x) функция, непрерывная в точке x = a (см. п. 6).
- 4. Если $\lim_{x\to a} f_1(x) = A_1$ и $\lim_{x\to a} f_2(x) = A_2$, где A_1, A_2 числа, то

$$\lim_{x \to a} (f_1(x) \pm f_2(x)) = A_1 \pm A_2, \quad \lim_{x \to a} (f_1(x) \cdot f_2(x)) = A_1 \cdot A_2 \quad \text{II} \quad \lim_{x \to a} \frac{f_1(x)}{f_2(x)} = \frac{A_1}{A_2}$$

при условии, что $A_2 \neq 0$.

Теоремы о бесконечно малых и бесконечно больших функциях (для краткости обозначим: δM – бесконечно малая функция, $\delta \delta$ – бесконечно большая функция, $\delta \epsilon P$ – локально ограниченная функция).

- 5. $\delta M \pm \delta M = \delta M$.
- 6. $\delta M \cdot \delta M = \delta M$.
- 7. $\delta M \cdot o \epsilon p = \delta M$.
- 8. $\frac{o \epsilon p}{\delta m} = \delta \delta$, если *о \epsilon p* не является δm .
- 9. $\delta\delta + \delta\delta = \delta\delta$, если обе $\delta\delta$ одного знака.

10.
$$\delta\delta \cdot \delta\delta = \delta\delta$$
.

11. $\delta\delta \cdot ozp = \delta\delta$, если ozp не является δM .

12.
$$\frac{ozp}{66} = 6M$$
.

Примеры.

- 1) $\lim_{x\to a} 10=10$ (здесь использована теорема 1);
- 2) $\lim_{x\to 2} (10(2x-1)) = 10 \lim_{x\to 2} (2x-1) = 10(2\cdot 2-1) = 30$ (здесь использованы теоремы 2,

3 и непрерывность функции y = 2x - 1);

3)
$$\lim_{x \to 1} \frac{x^2 - 4}{x - 1} = \lim_{x \to 1} \left(\frac{oxp}{6m} \right) = \lim_{x \to 1} 66 = \infty$$
 (здесь использована теорема 8);

$$\lim_{x \to \infty} \frac{x^2 + 4x - 5}{x^2} = \lim_{x \to \infty} \left(\frac{x^2}{x^2} + \frac{4x}{x^2} - \frac{5}{x^2} \right) = \lim_{x \to \infty} \left(1 + \frac{4}{x} - \frac{5}{x^2} \right) = \lim_{x \to \infty} 1 + 4 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty} \frac{1}{x^2} = 1 + 4 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty} \frac{1}{x^2} = 1 + 4 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty} \frac{1}{x^2} = 1 + 4 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty} \frac{1}{x^2} = 1 + 4 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty} \frac{1}{x^2} = 1 + 4 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty} \frac{1}{x^2} = 1 + 4 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty} \frac{1}{x} = 1 + 4 \lim_{x \to \infty} \frac{1}{x} - 5 \lim_{x \to \infty}$$

 $=1+4\lim_{x\to\infty}$ бм $-5\lim_{x\to\infty}$ бм $=1+4\cdot0-5\cdot0=1$ (здесь использованы теоремы 2, 4 и 12).

5. Раскрытие неопределенностей

Если некоторый предел существует, но не может быть вычислен при помощи теорем о конечных пределах или теорем о бесконечно малых, бесконечно больших и локально ограниченных функциях, то говорят, что этот предел *имеет неопределенность* и указывают ее вид. Основные виды неопределенностей: $\left(\frac{\infty}{\infty}\right)$, $\left(\frac{0}{0}\right)$, $\left(1^{\infty}\right)$.

Чтобы вычислить предел, имеющий неопределенность, нужно предварительно преобразовать функцию, стоящую под знаком предела, таким образом, чтобы неопределенность исчезла, т.е. раскрыть неопределенность. Для

этой цели рекомендуется использовать определенные правила.

<u>Правило 1</u>. Чтобы раскрыть неопределенность $\left(\frac{\infty}{\infty}\right)$ при $x \to \infty$, образованную отношением двух многочленов или иррациональных функций, нужно в числителе и знаменателе вынести за скобки старшие степени x и сократить дробь на степень x.

Пример.

$$\lim_{x \to \infty} \frac{3x^2 + 2x - 1}{x^3 + x + 7} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{x^2 \left(3 + \frac{2}{x} - \frac{1}{x^2}\right)}{x^3 \left(1 + \frac{1}{x^2} + \frac{7}{x^3}\right)} = \lim_{x \to \infty} \frac{3 + \frac{2}{x} - \frac{1}{x^2}}{x \left(1 + \frac{1}{x^2} + \frac{7}{x^3}\right)} = \lim_{x \to \infty} \frac{ocp}{oo} = \lim_{x \to \infty} om = 0$$
(здесь использовано, что $\frac{1}{x} \to 0$, $\frac{1}{x^2} \to 0$, $\frac{1}{x^3} \to 0$ при $x \to \infty$).

Из правила 1 следует, что для раскрытия неопределенности $\left(\frac{\infty}{\infty}\right)$ при $x \to \infty$, образованной делением целых многочленов одинаковой степени, достаточно вычислить отношение коэффициентов при старших степенях переменной x:

$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^n + b_1 x^{n-1} + \dots + b_n} = \left(\frac{\infty}{\infty}\right) = \frac{a_0}{b_0}.$$

<u>Правило 2</u>. Чтобы раскрыть неопределенность $\left(\frac{0}{0}\right)$ при $x \to a$, где a – число, образованную отношением двух функций, нужно в числителе и знаменателе дроби выделить *критический множитель* (x-a), и сократить дробь на него.

Пример.
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 2x - 3} = \left(\frac{0}{0}\right) = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{(x - 3)(x + 1)} = \lim_{x \to 3} \frac{x + 3}{x + 1} = \frac{6}{4} = 1,5$$
 (здесь

критический множитель — это (x-3), для его выделения использовано разложение многочленов на множители).

Для выделения критического множителя в случае, когда неопределенность $\left(\frac{0}{0}\right)$ образована отношением тригонометрических, показательных, или логарифмических функций, используют *принцип замены бесконечно малых функций*: при вычислении предела можно заменить любой бесконечно малый сомножитель на ему эквивалентный. При этом можно использовать теоретические соотношения эквивалентностей. Пример.

$$\lim_{x \to 0} \frac{\arcsin 2x}{\ln(1 - 2x^2)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \lim_{x \to 0} \frac{\arcsin 2x}{\ln(1 + (-2x^2))} = \begin{cases} \arcsin x - x & \text{при } x \to 0 \Rightarrow \\ \arcsin x - x & \text{при } x \to 0 \Rightarrow \\ \ln(1 + x) - x & \text{при } x \to 0 \Rightarrow \\ \ln(1 + x) - x & \text{при } x \to 0 \Rightarrow \end{cases}$$

$$= \lim_{x \to 0} \frac{2x}{-2x^2} = -\lim_{x \to 0} \frac{1}{x} = -\lim_{x \to 0} \frac{\partial zp}{\partial x} = -\lim_{x \to 0} \frac{\partial \delta}{\partial x} = \infty$$

(здесь критический множитель — это (x - 0) = x, для его выделения использован принцип замены эквивалентных бесконечно малых и соотношения эквивалентностей).

<u>Правило 3</u>. Чтобы раскрыть неопределенность (1^{∞}) , нужно свести ее ко второму замечательному пределу, который может быть записан в двух формах:

$$\lim_{z\to\infty} \left(1+\frac{1}{z}\right)^z = e_{\text{ИЛИ}} \quad \lim_{z\to0} \left(1+z\right)^{\frac{1}{z}} = e;$$

здесь e — это иррациональное число, которое можно представить в виде бесконечной непериодической десятичной дроби: e = 2,7182818... (e \approx 2,72).

$$\underline{\Pi} \underline{\rho} \underline{\mu} \underline{\rho}. \lim_{x \to \infty} \left(\frac{3x+2}{3x+1} \right)^{-x^3} = \left(1^{\infty} \right) = \begin{cases} \text{сводим ко второму} \\ \text{замечательному пределу} \end{cases} = \lim_{x \to \infty} \left(\frac{(3x+1)+1}{3x+1} \right)^{-x^3} = \lim_{x \to \infty} \left(1 + \frac{1}{3x+1} \right)^{-x^3} = \lim_{x \to \infty} \left(1 + \frac{1}{3x+1} \right)^{-x^3} = e^{\lim_{x \to \infty} \frac{-x^3}{3x+1}} = e^{\lim_{x \to \infty} \frac{-x^3}$$

При вычислении предела учтено, что $z = \frac{1}{3x+1} \to 0$ при $x \to \infty$,

$$\lim_{x \to \infty} \frac{-x^3}{3x+1} = \left(\frac{\infty}{\infty}\right) = -\lim_{x \to \infty} \frac{x^3}{x\left(3+\frac{1}{x}\right)} = -\lim_{x \to \infty} \frac{x^2}{3+\frac{1}{x}} = -\lim_{x \to \infty} \frac{\delta\delta}{\delta\rho} = -\lim_{x \to \infty} \delta\delta = -\infty, \qquad e^y \to 0$$

при
$$y = \frac{-x^3}{3x+1} \rightarrow -\infty$$
.

6. Непрерывность функции, точки разрыва

Функция y = f(x) называется непрерывной в точке x_0 , если:

- 1) $x_0 \in OO\Phi$ вместе с некоторой своей окрестностью;
- 2) существует конечный предел $\lim_{x\to x_0} f(x) = A$;
- 3) этот предел совпадает со значением функции в точке x_0

$$A = \lim_{x \to x_0} f(x) = f(x_0).$$

Все элементарные функции непрерывны в каждой точке своей области определения.

Если функция не является непрерывной в точке x_0 , но она определена в окрестности этой точки (за исключением, быть может, самой точки x_0), то x_0 называется *точкой разрыва* функции.

Для определения вида разрыва в точке x_0 находят односторонние пределы $\lim_{x \to \infty} f(x)$

 $\lim_{x \to x_0 = 0} f(x)$ и $\lim_{x \to x_0 + 0} f(x)$. При этом если существуют односторонние пределы

 $\lim_{x \to x_0 = 0} f(x) = \lim_{x \to x_0 + 0} f(x) = A$, но $A \neq f(x_0)$, то говорят, что функция терпит в

точке x_0 разрыв типа выколотой точки; если существуют односторонние пре-

делы
$$\lim_{x \to x_0 = 0} f(x) = A_1$$
 $\lim_{x \to x_0 + 0} f(x) = A_2$, но $A_1 \neq A_2$, то $\lim_{x \to x_0} f(x)$ не существует;

в этом случае говорят, что функция терпит в точке x_0 разрыв типа «*скачок*»; если левосторонний либо правосторонний (или оба) пределы функции при $x \to x_0$ бесконечные, то говорят, что функция терпит в точке x_0 *бесконечный разрыв*.

Разрывы типа выколотой точки и типа «скачок» относятся к конечным

разрывам, или разрывам І рода, бесконечные разрывы относятся к разрывам II рода.

Примеры.

 $y = \begin{cases} -x, & x \le 0, \\ 2x, & x > 0 \end{cases}$ непрерывна $x \in (-\infty; 0) \cup (0; +\infty)$ 1) силу непрерывности функций y = -x и y = 2x. В точке x = 0 функция также непрерывна, т.к.

$$\lim_{x \to 0-0} f(x) = \lim_{x \to 0-0} (-x) = 0, \quad \lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} 2x = 0 \implies \exists \lim_{x \to 0} f(x) = 0;$$
$$f(0) = (-x) \Big|_{x=0} = 0 \implies \lim_{x \to 0} f(x) = f(0).$$

Следовательно, функция непрерывна для всех $x \in (-\infty; +\infty)$ (рис. 9).

2) Функция $y = \begin{cases} 2+x, & x \le 0, \\ 3, & x > 0 \end{cases}$ непрерывна $x \in (-\infty; 0) \cup (0; +\infty)$ в силу

непрерывности функций y = 2 + x и y = 3. В точке x = 0 функция терпит разрыв типа «скачок» (рис. 10), т.к.

 $\lim_{x\to 0-0} f(x) = \lim_{x\to 0-0} (2+x) = 2, \quad \lim_{x\to 0+0} f(x) = \lim_{x\to 0+0} 3 = 3, \text{ следовательно}, \ \lim_{x\to 0} f(x) \text{ не}$ существует.

3) Функция $y = \operatorname{tg} x$ непрерывна во всех точках своей ООФ, т.е. для $x \neq \frac{\pi}{2} + \pi k$, $k = 0, \pm 1, \pm 2, \dots$ В точках $x = \frac{\pi}{2} + \pi k$ функция терпит разрывы II рода (рис. 11),

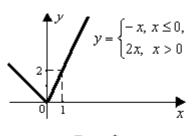


Рис. 9.

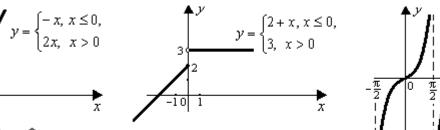
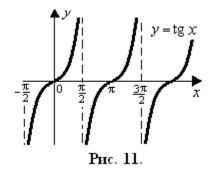


Рис. 10.



T.K.
$$\lim_{x \to \frac{\pi}{2} + \pi k = 0} tgx = +\infty; \quad \lim_{x \to \frac{\pi}{2} + \pi k = 0} tgx = -\infty.$$

СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ»

1. Дифференцирование функций

Производной функции y = f(x) в точке x называется конечный предел отношения приращения функции Δy к приращению аргумента Δx :

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \,,$$

где $\Delta y = f(x + \Delta x) - f(x)$.

Другие обозначения производной:
$$y'_x$$
, $f'(x)$, $\frac{dy}{dx}$, $\frac{df}{dx}$.

Если существует производная функции y = f(x) в точке x, то функция называется дифференцируемой в этой точке. Дифференцирование функции – это процесс нахождения производной y_x' . При дифференцировании используют таблицу производных и правила дифференцирования. Таблица 2.

Таблица производных основных элементарных функций.

1	$(x^n)' = n \cdot x^{n-1}, n \in R$		
2	$(a^x)' = a^x \cdot \ln a, a > 0, a \neq 1$	10	$(\operatorname{sh} x)' = \operatorname{ch} x$
3	$(e^x)' = e^x$	11	$(\operatorname{ch} x)' = \operatorname{sh} x$
4	$\left(\log_a x\right)' = \frac{1}{x \cdot \ln a}, a > 0, a \neq 1$	12	$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x};$
5	$\left(\ln x\right)' = \frac{1}{x}$	13	$(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}.$
6	$(\sin x)' = \cos x$	14	$\left(\arcsin x\right)' = \frac{1}{\sqrt{1-x^2}};$
7	$(\cos x)' = -\sin x$	15	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}};$
8	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x};$	16	$(\operatorname{arctg} x)' = \frac{1}{1+x^2};$
9	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}.$	17	$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}.$

Основные правила дифференцирования.

Производная от постоянной равна нулю: (c)' = 0.

Производная алгебраической суммы $(u \pm v)$ двух дифференцируемых функций u(x) и v(x) существует и равна алгебраической сумме производных этих функций: $(u \pm v)' = u' \pm v'$

Производная произведения двух дифференцируемых функций u(x) и v(x) существует и вычисляется по формуле: $(u \cdot v)' = u' \cdot v + u \cdot v'$.

Производная отношения двух дифференцируемых функций u(x) и v(x)

существует и вычисляется по формуле: $\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$.

Постоянный множитель можно выносить за знак производной: $(c \cdot u(x))' = c \cdot u'(x)$

Производная от сложной функции: если y = f(z(x)), где f(z) и z(x) — дифференцируемые функции, то $y_x' = f_z' \cdot z_x'$ («правило цепочки»). Производная от функции, заданной неявно: если функция y(x) задана уравнением F(x,y)=0, то для нахождения y_x' нужно продифференцировать обе части тождества $F(x,y(x))\equiv 0$ по аргументу x и из полученного равенства найти y_x' как решение линейного уравнения.

1) Производная от функций y(x), заданной параметрически: если $\begin{cases} x = x(t), \\ y = y(t), \end{cases}$ где x(t), y(t) — дифференцируемые функции, то:

$$y_x' = \frac{y_t'}{x_t'}.$$

Производные высших порядков: производная 2-го порядка: $y_x'' = (y_x')_x'$, 3-го порядка: $y_x''' = (y_x')_x'$ и т.д. Для обозначений производных высшего порядка используются также символы вида: f''(x), f_{xx}'' , $\frac{d^3f}{dx^3}$. Производные 4 и более высоких порядков обозначаются при помощи римских цифр: $y^{\prime\prime\prime}$, $y^{\prime\prime}$ Производная n-го порядка обозначается $y^{(n)}$, она получается n-кратным диф-

ференцированием функции y = f(x): $y^{(n)} = (y^{(n-1)})'$.

2. Вычисление пределов при помощи правила Лопиталя

Правило Лопиталя: предел отношения двух бесконечно малых или бесконечно больших функций при $x \to a$ равен пределу отношения их производных, если предел отношения производных существует (конечный или бесконечный):

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Правило Лопиталя позволяет раскрывать неопределенности $\left(\frac{0}{0}\right)$ или $\left(\frac{\infty}{\infty}\right)$.

Правило Лопиталя справедливо и в случае, когда $x \to \infty$. Его можно применять неоднократно.

3. Исследование функций и построение графиков

Полное исследование функции y = f(x) для построения ее графика включает следующие пункты (не обязательно именно в этом порядке).

1)Область определения функции (ООФ) и область ее значений (ОЗФ).

Если область определения функции y = f(x) не задана специально, то считают, что она совпадает с областью допустимых значений ее аргумента, т.е. с множеством всех точек x, для которых выполнима операция f. При нахождении ООФ используют ООФ элементарных функций $y = \ln(x)$ (x > 0),

$$y = \frac{1}{x}$$
 $(x \neq 0)$, $y = \sqrt[2\eta]{x}$ $(x \geq 0)$, и др.

Область значений функции находят только в случаях, когда ее можно сразу указать, опираясь на свойства элементарных функций, например, для функции $y = \left(\frac{x}{x-1}\right)^2$, очевидно, $y \ge 0$.

Для установления четности (нечетности) функции y = f(x), имеющей симметричную область определения, проверяют справедливость равенств f(-x) = f(x) (f(-x) = -f(x)) для всех $x \in OO\Phi$.

В случае четности или нечетности функции исследование ее поведения и построение графика можно проводить только для $x \ge 0$, а затем достроить график, используя симметрию: для четной функции график симметричен относительно оси OY, а для нечетной – относительно начала координат.

Для установления периодичности функции проверяют справедливость равенства f(x+T) = f(x) для $\forall x \in OO\Phi$, где T определяется видом функции. В случае периодической функции исследование проводят для одного промежутка периодичности.

3) Непрерывность функции, точки разрыва, вертикальные асимптоты.

Для определения промежутков непрерывности функции используют непрерывность основных элементарных функций. В точках, «подозрительных» на разрыв (отдельных точек, не входящих в ООФ), проверяют выполнение условий непрерывности. Если функция терпит разрыв в точке x_0 , то определют тип разрыва.

Если функция y = f(x) имеет бесконечный разрыв в некоторой точке x_0 , то прямая $x = x_0$ является вертикальной асимптотой графика функции. Если только один из односторонних пределов при $x \to x_0 - 0$ или $x \to x_0 + 0$ является бесконечным, то асимптота называется односторонней.

Если функция определена не на всей числовой оси, то необходимо вычислить односторонние пределы функции в точках, ограничивающих промежутки ООФ. Если односторонний предел функции в точке a, ограничивающей промежуток ООФ, бесконечен, то x = a является односторонней вертикальной асимптотой графика функции. Например, если ООФ: $x \in (a; +\infty)$, то нужно найти $\lim_{x\to a+0} f(x)$; если этот предел окажется бесконечным, то x = a является односторонней вертикальной асимптотой графика функции.

4)Промежутки монотонности и экстремумы.

Для определения промежутков монотонности функции y = f(x) используют достаточный признак монотонности.

Достаточный признак монотонности дифференцируемой функции: если на интервале $x \in (a, b)$ производная f'(x) сохраняет знак, то функция y = f(x) сохраняет монотонность на этом интервале, а именно: если f'(x) > 0,

то f(x) возрастает, если f'(x) < 0, то f(x) убывает.

Для установления точек экстремумов функции y = f(x) используют необходимый и достаточные признаки существования экстремума.

Необходимое условие существования экстремума функции: если непрерывная функция y = f(x) имеет экстремум в точке x_0 , то ее производная в этой точке равна нулю или не существует.

Точки, принадлежащие ООФ, в которых производная f'(x) равна нулю или не существует, называют *критическими точками функции по ее первой производной* (точками, «подозрительными на экстремум»).

Первый достаточный признак существования экстремума: если при переходе через критическую точку x_0 (слева направо) производная f'(x) изменяет свой знак, то в точке x_0 есть экстремум причем это максимум, если знак f'(x) меняется с плюса на минус, и это минимум, если знак f'(x) меняется с минуса на плюс. Если при переходе через критическую точку x_0 производная f'(x) не изменяет свой знак, то в точке x_0 нет экстремума функции f(x).

Второй достаточный признак существования экстремума: если y=f(x) — дважды дифференцируемая функция в точке x_0 и $f'(x_0)=0$, тогда: если $f''(x_0)>0$, то x_0 — точка минимума функции, а если $f''(x_0)<0$, то x_0 — точка максимума.

Для нахождения точек экстремумов функции y = f(x) сначала находят критические точки по первой производной. После этого проверяют выполнение в них достаточных условий существования экстремума функции.

5)Промежутки выпуклости, вогнутости графика и точки перегиба.

Дуга кривой L называется выпуклой, если все ее точки расположены не

выше касательной, проведенной в любой точке этой дуги (рис. 27), и называется *вогнутой*, если все ее точки расположены не ниже касательной, проведенной в любой точке дуги кривой.

Точки, принадлежащие кривой, и отделяющие участки выпуклости от участков вогнутости, назы-

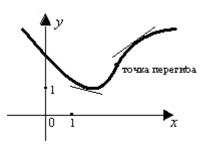


Рис. 27.

ваются точками перегиба кривой (рис. 27).

Достаточное условие выпуклости, вогнутости графика функции: если функция y = f(x) является дважды дифференцируемой и ее вторая производная f''(x) сохраняет знак при всех $x \in (a;b)$, то график функции имеет постоянное направление выпуклости на этом интервале: при f''(x) < 0 — выпуклость вверх, при f''(x) > 0 — вогнутость (выпуклость вниз).

Необходимое условие для точки перегиба: если x_0 – абсцисса точки перегиба графика функции y=f(x), то ее вторая производная в этой точке равна нулю или не существует.

Точки, принадлежащие графику функции y = f(x), в которых f''(x) = 0 или f''(x) не существует, называются *критическими точками функции по ее второй производной* (точками, «подозрительными на перегиб»).

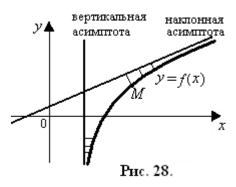
Достаточное условие для точек перегиба: если вторая производная f''(x) при переходе через точку x_0 , подозрительную на перегиб, изменяет знак, то точка графика с абсциссой x_0 является точкой перегиба. Если f''(x) не изменяет знак при переходе через точку x_0 , то перегиба нет.

При нахождении промежутков выпуклости, вогнутости графика функции y = f(x) сначала находят критические точки по второй производной, после этого выделяют промежутки знакопостоянства второй производной на ООФ: если f''(x) > 0, то кривая вогнутая, а если f''(x) < 0, то кривая выпуклая. Точки перегиба определяют, используя достаточные условия перегиба.

6)Наклонные и горизонтальные асимптоты.

Aсимптотой кривой, имеющей бесконечную ветвь, называется прямая, расстояние до которой от текущей точки M кривой стремится к нулю при удалении точки M от начала координат (рис. 28).

Если график функции y = f(x) имеет наклонную асимптоту с уравнением y = kx + b,



то параметры k и b в уравнении асимптоты можно найти по формулам:

$$k = \lim_{x \to \infty} \frac{f(x)}{x}, \ b = \lim_{x \to \infty} (f(x) - kx).$$

Если хотя бы один из этих пределов является бесконечным или не существует, то наклонных асимптот нет. В случае, когда k=0, график имеет *горизонтальную асимптоту* с уравнением y=b.

В некоторых случаях (как правило, если f(x) выражена через показатель-

ную или логарифмическую функцию), график может иметь асимптоты только при $x \to -\infty$ или только при $x \to +\infty$.

Иногда ветви графика y = f(x) при $x \to -\infty$ и при $x \to +\infty$ имеют разные асимптоты.

7)Точки пересечения графика с осями координат или другие дополнительные точки графика.

Дополнительные точки графика находят в случаях, когда недостаточно информации для выбора масштаба по осям координат, т.е. когда на некотором промежутке ООФ нет ни точек экстремумов, ни точек перегибов, ни точек пересечения графика с осями координат.

СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «КОМПЛЕКСНЫЕ ЧИСЛА»

1. Комплексные числа

Комплексным числом называется выражение вида

$$z = x + iy$$
,

где x, y — действительные числа, а i — mнимая eдиница, т.е. число, для которого выполнено равенство $i^2 = -1$.

Если x = 0, то комплексное число z = 0 + iy называется *чисто мнимым*.

Если y=0, то комплексное число $z=x+i0=x\,$ является действительным, в частности, если x=y=0, то z=0.

На множестве комплексных чисел алгебраическое уравнение n-й степени вида $a_0x^n+a_1x^{n-1}+a_2x^{n-2}+...+a_{n-1}x+a_n=0$, где a_k — числа, $a_0\neq 0$, имеет ровно n корней.

<u>Пример</u>. Решим уравнение: $x^2 + 9 = 0$.

$$x^2 = -9 \implies x_{1,2} = \pm \sqrt{-9} = \pm \sqrt{9}\sqrt{-1} = \pm 3i$$
.

Следовательно, уравнение имеет 2 корня: $x_1 = 3i$, $x_1 = -3i$.

На координатной плоскости Oxy комплексное число z = x + iy можно изобразить точкой M(x; y) или радиус-вектором этой

точки \overline{OM} (рис. 12), где $x = \text{Re}z - \partial e \tilde{u} c m e u m e n b h a s u a c m b u u c n a z, <math>y = \text{Im}z - m h u m a s u a c m b u u c n a .$

 $\Psi_{\text{ИСЛО}}$ $\bar{z} = x - iy$ называется сопряженным



комплексному числу z = x + iy. Геометрически точки z и \bar{z} симметричны относительно оси Ox (рис. 12).

Модулем комплексного числа называется действительное неотрицательное число $|z| = \sqrt{x^2 + y^2}$. Геометрически модуль комплексного числа $|z| = r_-$ это модуль вектора \overline{OM} (рис. 12).

Комплексное число можно задать либо парой действительных чисел (декартовы координаты точки (x; y)), либо его модулем и величиной угла φ между вектором \overline{OM} и положительным направлением оси Ox (полярные координаты точки $(r; \varphi)$). Величина угла φ называется *аргументом* комплексного числа.

Аргумент комплексного числа определен неоднозначно, а с точностью до слагаемого $2\pi n$, $n=0,\pm 1,\pm 2,...$. Значение аргумента, заключенное в промежутке $(-\pi;\pi]$, называется главным значением аргумента и обозначается argz, тогда можно записать:

$$\varphi = \arg z + 2\pi n, \ n = 0, \pm 1, \pm 2, \dots$$

Для комплексного числа z = 0 аргумент не определен, его модуль r = 0.

Запись комплексного числа в виде (10) называют алгебраической формой комплексного числа.

Если использовать формулы связи между декартовыми и полярными координатами $x = r \cos \varphi$, $y = r \sin \varphi$, то можно записать *тригонометрическую форму* комплексного числа:

$$z = r(\cos \varphi + i \sin \varphi)$$
,

где

$$r = \sqrt{x^2 + y^2}$$
, $\operatorname{tg} \varphi = \frac{y}{x}$, $\varphi = \operatorname{arg} z$.

Для определения главного значения аргумента можно использовать формулы:

$$arctg \frac{y}{x}, \quad \text{если } M \in I \text{ четверти} \quad \text{или } M \in IV \text{ четверти},$$

$$arctg \frac{y}{x} + \pi, \quad \text{если } M \in II \text{ четверти},$$

$$arg z = \begin{cases} arctg \frac{y}{x} - \pi, & \text{если } M \in III \text{ четверти}, \\ \frac{\pi}{2}, & \text{если } x = 0, \ y > 0, \\ -\frac{\pi}{2}, & \text{если } x = 0, \ y < 0. \end{cases}$$

<u>Пример.</u> Получим тригонометрическую форму комплексного числа z = -2-2i.

$$x = -2, \ y = -2 \implies r = \sqrt{(-2)^2 + (-2)^2} = \sqrt{8},$$
 $(-2; -2) \in III$ четверти \Rightarrow $\Rightarrow \arg z = arctg \frac{y}{x} - \pi = arctg 1 - \pi = \frac{\pi}{4} - \pi = -\frac{3\pi}{4} \in (-\pi; \pi]^*$

следовательно, тригонометрическая форма комплексного числа z для $\varphi = \arg z$ имеет вид:

$$z = \sqrt{8} \left(\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right).$$

2. Действия над комплексными числами

Равенство двух комплексных чисел $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ означает равенство их действительных и мнимых частей: $x_1 = x_2$, $y_1 = y_2$.

Сложение, вычитание, умножение и деление комплексных чисел в алгебраической форме определяются следующим образом. Если $z_1 = x_1 + iy_1$,

$$z_2 = x_2 + iy_2$$
, то

1)
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2);$$

2)
$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$$
;

3)
$$z_1 z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1);$$

$$4) \ \frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{(x_1 x_2 + y_1 y_2) + i(x_2 y_1 - x_1 y_2)}{x_2^2 + y_2^2}, \quad \text{если} \quad z_2 \neq 0.$$

<u>Пример.</u> Даны числа $z_1 = 4 - i$ и $z_2 = 1 + 3i$. Вычислить $\frac{\overline{z}_1}{z_1 + z_2}$.

Найдем $\bar{z}_1 = 4 + i$, $z_1 + z_2 = 4 - i + 1 + 3i = 5 + 2i$, затем выполняем деление при помощи домножения числителя и знаменателя на число, сопряженное знаменателю:

$$\frac{\overline{z}_1}{z_1 + z_2} = \frac{4+i}{5+2i} = \frac{(4+i)(5-2i)}{(5+2i)(5-2i)} = \frac{20-8i+5i-2i^2}{25-4i^2} = \frac{22-3i}{29} = \frac{22}{29} - \frac{3}{29}i$$

(при вычислениях учтено, что $i^2 = -1$).

Умножение, деление, возведение в натуральную степень и извлечение корня из комплексных чисел в тригонометрической форме определяются следующим образом:

если
$$z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1)$$
, $z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2)$, то
1) $z_1z_2 = r_1r_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$;
2) $\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)\right)$, если $r_2 \neq 0$;
если $z = r(\cos\varphi + i\sin\varphi)$, $n \in N$, то
3) $z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$;
4) $\sqrt[n]{z} = \sqrt[n]{r} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right)$, $k = 0,1,2,...n-1$.

В ответ записываются главные значения аргумента полученного результата, заключенные в промежутке $(-\pi;\pi]$.

СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ»

1. Первообразная и неопределенный интеграл. Таблица интегралов

Функция F(x) называется *первообразной* для функции f(x) на интервале (a,b), если для всех x из этого интервала выполняется равенство F'(x) = f(x).

Неопределенным интегралом от функции f(x) называется множество всех первообразных этой функции, то есть неопределенный интеграл — это выражение вида $\int f(x)dx = F(x) + C$, где F'(x) = f(x).

Процедуру нахождения неопределенного интеграла называют *интегри- рованием*. При интегрировании используют: таблицу интегралов (таблица 2), свойства интегралов и специальные методы интегрирования, основные из ко-

торых – замена переменной и интегрирование по частям.

Таблица 2.

1.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \ (\alpha \neq -1);$$
10.
$$\int \frac{dx}{\sin^{2} x} = -\cot x + C;$$
11.
$$\int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C;$$
12.
$$\int \frac{dx}{\cos x} = \ln \left| \tan \frac{x}{2} \right| + C;$$
13.
$$\int \frac{dx}{\cos x} = \ln \left| \tan \frac{x}{2} \right| + C;$$
14.
$$\int e^{x} dx = -\cos x + C;$$
15.
$$\int \sin x dx = -\cos x + C;$$
16.
$$\int \cos x dx = \sin x + C;$$
17.
$$\int \tan x dx = -\ln |\cos x| + C;$$
18.
$$\int \cot x dx = \ln |\sin x| + C;$$
19.
$$\int \frac{dx}{\cos^{2} x} = \tan x + C;$$
10.
$$\int \frac{dx}{\sin^{2} x} = -\cot x + C;$$
11.
$$\int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C;$$
12.
$$\int \frac{dx}{\cos^{2} x} = \arcsin \frac{x}{a} + C;$$
13.
$$\int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = -\cot x + C;$$
14.
$$\int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = \ln \left| x + \sqrt{x^{2} \pm \alpha} \right| + C;$$
15.
$$\int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a} \arctan \frac{x}{a} + C;$$
16.
$$\int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C.$$
16.
$$\int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C.$$

2. Свойства неопределенного интеграла. Замена переменной под знаком неопределенного интеграла

При интегрировании функций наиболее часто используются следующие его свойства:

1)
$$\int (f_1(x) + f_2(x))dx = \int (f_1(x) + f_2(x))dx$$
;
2) $\int (k \cdot f(x))dx = k \cdot \int f(x)dx$;
3) $\int dz = z + C$.

<u>Пример 1</u>. Найти $\int (\cos x + 3\operatorname{ctg} x - 5) dx$

Решение. Воспользуемся свойствами 1-3, а также таблицей интегралов:

$$\int (\cos x + 3 \cot x - 5) dx = \int \cos x \, dx + 3 \int \cot x \, dx - 5 \int dx = \sin x + 3 \ln|\sin x| - 5x + C.$$

OTBET: $\int (\cos x + 3\cot x - 5) dx = \sin x + 3\ln|\sin x| - 5x + C.$

Одним из основных методов интегрирования является метод замены

переменной (метод подстановки), который в некоторых случаях позволяет свести заданный интеграл к табличному интегралу.

Замена переменной под знаком неопределенного интеграла осуществляется по формулам: $\int f(x) \ dx = \int f(\varphi(t)) \ \varphi'(t) dt \ _{\rm ИЛИ} \ \int f(z(x)) \ z'(x) dx = \int f(z) dz \ .$

<u>Пример 2</u>. Найти $\int \cos x \, e^{\sin x} \, dx$.

Решение.

$$\int \cos x \ e^{\sin x} \ dx = \begin{vmatrix} \sin x = z; \cos x dx = dz \end{vmatrix} = \int e^z dz = e^z + C = \begin{vmatrix} \cos x + C = \sin x \end{vmatrix} = e^{\sin x} + C.$$

Other:
$$\int \cos x \ e^{\sin x} \ dx = e^{\sin x} + C.$$

Этот интеграл можно взять, используя подведение под знак дифференциала части подинтегральной функции (не прописывая замену переменной)

$$\int \cos x \ e^{\sin x} \ dx = \int e^{\sin x} (\sin x)' dx = \int e^{\sin x} d(\sin x) = e^{\sin x} + C.$$

Наиболее часто прием подведения под знак дифференциала используется при линейной замене переменной интегрирования:

$$\int f(ax+b)dx = \frac{1}{a} \int f(ax+b)d(ax+b), \text{ Tak KaK } dx = \frac{1}{a} d(ax+b).$$

Пример 3. Найти
$$\int \frac{dx}{(3x-5)^{2/3}}$$
.

Решение:

$$dx = \frac{1}{3}d(3x-5) \implies \int \frac{dx}{(3x-5)^{2/3}} = \int \frac{\frac{1}{3}d(3x-5)}{(3x-5)^{2/3}}.$$

Теперь воспользуемся свойством 2, а также таблицей интегралов:

$$\int \frac{dx}{(3x-5)^{2/3}} = \frac{1}{3} \int (3x-5)^{-2/3} d(3x-5) = \frac{1}{3} \frac{(3x-5)^{-2/3+1}}{-2/3+1} + C = \frac{1}{3} \frac{(3x-5)^{1/3}}{1/3} + C = (3x-5)^{1/3} + C.$$
Other:
$$\int \frac{dx}{(3x-5)^{2/3}} = (3x-5)^{1/3} + C.$$

3. Интегрирование по частям

Формулой *интегрирования по частям* называют следующую формулу: $\int u dv = uv - \int v du\,.$

Обычно за dv принимают такое выражение, интегрирование которого не вызывало бы трудностей, а за u — функцию, дифференцирование которой приводит к ее упрощению.

Можно выделить два основных класса интегралов, берущихся по частям:

1)
$$\int P_n(x) \sin bx \, dx$$
; $\int P_n(x) \cos bx \, dx$; $\int P_n(x) e^{bx} dx$; $\int P_n(x) a^{bx} \, dx$

— здесь за u принимают целый многочлен $P_n(x)$, за dv — оставшееся выражение, то есть, например $\sin bx \, dx$.

2)
$$\int P_n(x) \arcsin bx \, dx$$
; $\int P_n(x) \arctan bx \, dx$; $\int P_n(x) \ln bx \, dx$

- здесь за u принимают обратную функцию, например, $\arcsin bx$, за dv - оставшееся выражение, то есть $P_n(x)dx$.

4. Интегрирование рациональных дробей

Рациональной дробью R(x) называют отношение двух целых многочленов $P_n(x)$ и $Q_m(x)$, т.е. $R(x) = \frac{P_n(x)}{Q_m(x)}$. Для интегрирования рациональной дроби необходимо предварительно разложить ее, т.е. представить R(x) в виде суммы простейших дробей видов:

$$\frac{A}{x-\alpha}$$
, $\frac{B}{(x-\alpha)^k}$, $\frac{Mx+N}{x^2+px+q}$, $\frac{Mx+N}{(x^2+px+q)^r}$,

где k, r — целые положительные числа, а трехчлен $x^2 + px + q$ не имеет действительных корней.

Если дробь $\frac{P_n(x)}{Q_m(x)}$ неправильная ($k \ge r$), то необходимо предварительно выделить целую часть дроби.

5. Интегрирование некоторых тригонометрических функций

Для нахождения интегралов видов $\int \sin^2 x \, dx$ и $\int \cos^2 x \, dx$ используют тригонометрические формулы:

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x), \quad \cos^2 x = \frac{1}{2}(1 + \cos 2x).$$

Для нахождения интегралов вида $\int R(\sin x, \cos x) dx$, где R — рациональная функция (не содержащая $\sin x$ и $\cos x$ под знаком корней), используют уни-

версальную подстановку: $t = tg\frac{x}{2}$, которая сводит $\int R(\sin x, \cos x) dx$ к интегралу от рациональной функции, т.к.

$$\operatorname{tg} \frac{x}{2} = t \implies x = 2\operatorname{arctg} t \implies dx = \frac{2dt}{1+t^2} \quad \text{M} \quad \sin x = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2}.$$

5. Формула Ньютона-Лейбница

Формула Ньютона-Лейбница для вычисления определенного интеграла имеет вид:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a), \text{ если } F'(x) = f(x) \text{ и } f(x) \text{ непрерывна на } [a,b].$$

<u>Пример 4.</u> Вычислить определенный интеграл $\int_{0}^{\pi/2} (12x+3)\cos(13x)dx$.

Решение. Это определенный интеграл, берущийся по частям, получаем:

$$\int_{0}^{\frac{\pi}{2}} (12x+3)\cos(13x)dx = \begin{vmatrix} u = 12x+3; & du = 12dx; \\ dv = \cos 13dx; & v = \int dv = \int \cos 13x dx = \frac{1}{13} \int \cos(13x)d(13x) = \frac{1}{13}\sin 13x \end{vmatrix} =$$

$$= \frac{1}{13}(12x+3)\sin 13x \Big|_{0}^{\frac{\pi}{2}} - \frac{1}{13} \int_{0}^{\frac{\pi}{2}} \sin(13x)12 dx = \left(\frac{1}{13}(12x+3)\sin 13x + \frac{12}{13\cdot 13}\cos 13x\right) \Big|_{0}^{\frac{\pi}{2}} =$$

$$= \frac{6\pi+3}{13} - \frac{12}{169} = \frac{78\pi+27}{169} \approx 1,6.$$
Other:
$$\int_{0}^{\pi/2} (12x+3)\cos(13x) dx = \frac{78\pi+27}{169} \approx 1,6.$$

7. Несобственные интегралы первого и второго рода Примером *несобственного интеграла первого рода* является интеграл

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Интегралы

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx$$
, где a – точка бесконечного разрыва функции $f(x)$, и
$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx$$
, где b – точка бесконечного разрыва функции $f(x)$, от-

носятся к несобственным интегралам второго рода.

Несобственный интеграл называется сходящимся, если существует ко-

нечный предел в правой части равенства. Если же предел не существует или равен бесконечности, то интеграл называется *расходящимся*.

<u>Пример 5</u>. Исследовать на сходимость интеграл $\int_0^{+\infty} \frac{dx}{x^2 + 2x + 2}$.

Решение. Это несобственный интеграл первого рода, поэтому

$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 2x + 2} = \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{x^{2} + 2x + 2} = \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{(x+1)^{2} + 1} = \lim_{b \to +\infty} \int_{0}^{b} \frac{d(x+1)}{(x+1)^{2} + 1} = \lim_{b \to +\infty} \int_{0}^{b} \frac{d(x+1)}{(x+1)^{2} + 1} = \lim_{b \to +\infty} \arctan(x+1) \Big|_{0}^{b} = \lim_{b \to +\infty} (\arctan(b+1) - \arctan(b)) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

Ответ: интеграл $\int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 2}$ сходится и равен $\frac{\pi}{4} \approx 0.8$.

<u>Пример 6.</u> Исследовать на сходимость интеграл $\int_{1}^{2} \frac{dx}{(x-1)^4}$.

Решение. Это несобственный интеграл второго рода, так как x=1 – точка разрыва второго рода подынтегральной функции, поэтому

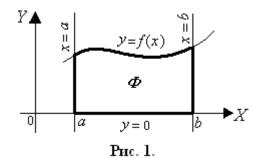
$$\int_{1}^{2} \frac{dx}{(x-1)^{4}} = \lim_{\varepsilon \to 0} \int_{1+\varepsilon}^{2} \frac{dx}{(x-1)^{4}} = \lim_{\varepsilon \to 0} \int_{1+\varepsilon}^{2} \frac{d(x-1)}{(x-1)^{4}} = -\frac{1}{3} \lim_{\varepsilon \to 0} \left(\frac{1}{(x-1)^{3}} \right) \Big|_{1+\varepsilon}^{2} = -\frac{1}{3} \lim_{\varepsilon \to 0} \left(\frac{1}{1^{3}} - \frac{1}{\varepsilon^{3}} \right) \Big|_{1+\varepsilon}^{2} = \infty,$$

следовательно, интеграл расходится.

Ответ: интеграл $\int_{1}^{2} \frac{dx}{(x-1)^4}$ расходится.

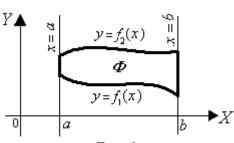
8. Вычисление площади плоской фигуры в декартовой системе координат (ДСК)

Криволинейной трапецией в ДСК называется фигура, ограниченная прямыми x = a, x = b, y = 0 и кривой y = f(x), где $f(x) \ge 0$ для $x \in [a; b]$ (рис. 1).



Формула для вычисления площади криволинейной трапеции:

$$S_{\phi} = \int_{a}^{b} f(x) dx.$$



Purc 2

Если фигура Φ ограничена в ДСК линиями $x=a,\ x=b,\ y=f_1(x)$ и $y=f_2(x)$ где $f_2(x)\geq f_1(x)$ для $x\in [a;b]$ (рис. 2), то площадь Φ можно вычислить по формуле:

$$S_{\phi} = \int_{a}^{b} (f_2(x) - f_1(x)) dx$$
.

СПРАВОЧНЫЙ МАТЕРИАЛ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ»

1. Дифференциальные уравнения 1-го порядка

Дифференциальным уравнением 1-го порядка называется уравнение вида

$$F(x, y(x), y'(x)) = 0$$
,

где x — независимая переменная, y(x) — неизвестная функция этой переменной, y'(x) — ее первая производная.

Часто дифференциальное уравнение первого порядка встречается в разрешенной относительно y' форме:

$$y' = f(x, y),$$

или в дифференциальной форме (в дифференциалах):

$$P(x, y)dx + Q(x, y)dy = 0.$$

Решением дифференциального уравнения называется функция y = g(x), которая при подстановке в дифференциальное уравнение обращает его в тождество.

Процесс нахождения решения дифференциального уравнения называется его интегрированием. В результате интегрирования дифференциального уравнения первого порядка получают не одно решение, а семейство решений, зависящих от одной произвольной постоянной C:

$$y = g(x, C)$$

– общее решение дифференциального уравнения 1-го порядка.

Если решение получено в виде, не разрешенном относительно у:

$$G(x, y, C) = 0$$
,

то его называют общим интегралом дифференциального уравнения 1-го порядка.

Всякое решение, получающееся из общего при конкретном числовом значении произвольной постоянной $C = C^0$, называется *частным решением*:

$$y = g(x, C^0).$$

Чтобы найти частное решение дифференциального уравнения, удовлетворяющее некоторому *начальному условию* $y(x_0) = y_0$, нужно в общее решение уравнения y = g(x, C) подставить $x = x_0$, $y = y_0$. Из полученного уравнения найти $C = C^0$, затем найденное значение C^0 подставить в общее решение. В результате получим частное решение

$$y=g(x,\,C^0).$$

Задача нахождения частного решения уравнения, удовлетворяющего начальному условию, называется задачей Коши.

Общее решение y = g(x, C) задает на плоскости XOY семейство интегральных кривых данного дифференциального уравнения, поскольку каждому значению $C = \overline{C}$ соответствует кривая с уравнением $y = g(x, \overline{C})$. Решению задачи Коши $y = g(x, C^0)$ соответствует одна интегральная кривая из этого семейства, проходящая через точку $(x_0; y_0)$.

2. Методы решения основных типов дифференциальных уравнений 1-го порядка

2.1. Дифференциальные уравнения с разделяющимися переменными.

Дифференциальное уравнение вида y' = f(x)g(y) называется дифференциальным уравнением с разделяющимися переменными. Отличительной особенностью уравнений этого типа является то, что в правой их части находится произведение функций $f(x) \cdot g(y)$, одна из которых зависит только от x, другая только от y.

Для того, чтобы найти решение уравнения, нужно разделить переменные x и y, собрав в левой и правой его частях функции, зависящие только от одной переменной.

Для разделения переменных в уравнении заменим производную y' на

 $\frac{dy}{dx}$ и умножим обе части уравнения на $\frac{dx}{g(y)}$:

$$\frac{dy}{dx} = f(x)g(y) \implies \frac{dy}{g(y)} = f(x)dx.$$

Получили уравнение с разделенными переменными. Общий интеграл этого уравнения, а следовательно, и уравнения находится почленным интегрированием его левой и правой частей:

$$\int \frac{dy}{g(y)} + C_1 = \int f(x)dx + C_2 \quad \Rightarrow \quad \int \frac{dy}{g(y)} = \int f(x)dx + C,$$

где C – произвольная постоянная, $C = C_2 - C_1$.

Таким образом, чтобы найти общее решение или общий интеграл уравнения, нужно разделить переменные x и y и почленно проинтегрировать полученное равенство с добавлением произвольной постоянной C.

<u>Пример 1.</u> Решить дифференциальное уравнение: $y' = \frac{\cos x}{y^2}$

Решение. Замечаем, что оно является уравнением с разделяющимися переменными. Заменим y' на $\frac{dy}{dx}$ и разделим переменные, умножая обе части уравнения на y^2dx :

$$\frac{dy}{dx} = \frac{\cos x}{v^2} \implies y^2 dy = \cos x \, dx.$$

Интегрируя полученное равенство, получим:

$$\int y^2 dy = \int \cos x dx + C.$$

Отсюда $\frac{1}{3}y^3 = \sin x + C$ — общий интеграл данного уравнения (константы интегрирования включены в общую константу C). Разрешая его относительно y, можно записать общее решение данного уравнения в виде

$$y = \sqrt[3]{3(\sin x + C)}.$$

OTBET: $y = \sqrt[3]{3(\sin x + C)}$.

Замечание. Уравнение вида $f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0$ также является уравнением с разделяющимися переменными, т.к. здесь коэффициенты при dx

и dy являются произведениями функций, каждая из которых зависит только от одной переменной.

2.2. Линейные дифференциальные уравнения 1-го порядка.

Дифференциальное уравнение вида y' + p(x)y = q(x), где p(x), q(x) - 3а-данные функции, называется линейным дифференциальным уравнением 1-го порядка.

Отличительной особенностью линейного уравнения является то, что искомая функция y и ее первая производная y' входят в уравнение линейно — в первых степенях и не перемножаются между собой.

Для решения уравнения воспользуемся способом подстановки. Будем искать неизвестную функцию y в виде произведения двух тоже пока неизвестных функций: положим y = u(x)v(x). Тогда y' = u'v + uv'. Подставив значения y и y' в уравнение, получим:

$$u'v + uv' + p(x)uv = q(x) \Leftrightarrow u'v + u(v' + p(x)v) = q(x)$$

Если выбрать v(x) так, чтобы выражение, стоящее в скобках, обратилось в нуль, т.е. v' + p(x)v = 0, то для второй функции u(x) получится уравнение u'v(x) = q(x).

Таким образом, решение линейного дифференциального уравнения сводится к решению двух уравнений, каждое из которых является дифференциальным уравнением с разделяющимися переменными. Общее решение уравнения есть произведение: $y = v(x) \cdot u(x, C)$.

<u>Пример 2</u>. Найти решение дифференциального уравнения $xy' = e^x - y$,

которое удовлетворяет условию $y\left(\frac{1}{2}\right) = \sqrt{e}$ (задача Коши).

Решение. Разделив все члены уравнения на x, перепишем уравнение в виде $y' + \frac{1}{x}y = \frac{e^x}{x}$. Оно является линейным дифференциальным уравнением.

Положим y = u(x)v(x), тогда y' = u'v + uv'. Подставив y и y' в уравнение,

получим:
$$u'v + uv' + \frac{1}{x}uv = \frac{e^x}{x} \Leftrightarrow$$

$$u'v + u\left(v' + \frac{1}{x}v\right) = \frac{e^x}{x}.$$
 (*)

Найдем функцию v, решая уравнение $v' + \frac{1}{x}v = 0$:

$$\frac{dv}{dx} = -\frac{1}{x}v \quad \Rightarrow \quad \frac{dv}{v} = -\frac{dx}{x} \quad \Rightarrow \quad \int \frac{dv}{v} = -\int \frac{dx}{x} + C \quad \Rightarrow \ln|v| = -\ln|x| + \ln|C_1|$$

(в данном случае удобно использовать логарифмическую константу интегрирования, положив $C = \ln \lvert C_1 \rvert$).

Из последнего уравнения следует: $\ln |v| = \ln \left| \frac{C_1}{x} \right| \implies v = \pm \frac{C_1}{x}$ — общее решение, а при соответствующем подборе $C_1 = \pm 1$ получаем $v = \frac{1}{x}$ — частное решение уравнения $v' + \frac{1}{x}v = 0$.

Подставив найденную функцию $v = \frac{1}{x}$ в уравнение (*), получим уравнение для функции u: $u'\frac{1}{x} = \frac{e^x}{x}$. Найдем функцию u(x,C) — общее решение этого уравнения:

$$u'\frac{1}{x} = \frac{e^x}{x} \implies \frac{du}{dx} = e^x \implies du = e^x dx \implies \int du = \int e^x dx \implies u(x,C) = e^x + C$$
.

Общим решением исходного уравнения является функция

$$y = v(x) \cdot u(x, C) = \frac{1}{x} (e^x + C)$$
.

Найдем частное решение, удовлетворяющее заданному начальному условию $y\left(\frac{1}{2}\right) = \sqrt{e}$. Для этого подставим в общее решение вместо x, y числа

$$\frac{1}{2}$$
, \sqrt{e} cootbetctbehho: $\sqrt{e} = \frac{1}{1/2} (e^{\frac{1}{2}} + C) \implies \sqrt{e} = 2(\sqrt{e} + C) \implies C = -\frac{1}{2} \sqrt{e}$.

Подставляя найденное значение C в общее решение, получим искомое частное решение (решение задачи Коши): $y = \frac{1}{x} \left(e^x - \frac{1}{2} \sqrt{e} \right)$.

OTBET:
$$y = \frac{1}{x} \left(e^x - \frac{1}{2} \sqrt{e} \right)$$
.

3. Дифференциальные уравнения 2-го порядка

Дифференциальным уравнением 2-го порядка называется уравнение вида

$$F(x, y, y', y'') = 0,$$

где x — независимая переменная, y(x) — неизвестная функция этой переменной, y'(x) и y''(x) — ее первая и вторая производные.

Иногда уравнение 2-го порядка встречается в форме, разрешенной относительно второй производной: y'' = f(x, y, y').

Общее решение уравнения 2-го порядка имеет вид: $y = g(x, C_1, C_2)$, где C_1 и C_2 – две произвольные постоянные.

Решение, полученное в неявном виде $G(x, y, C_1, C_2) = 0$, называется общим интегралом уравнения 2-го порядка.

Всякое решение, получающееся из общего решения при конкретных числовых значениях произвольных постоянных C_1 и C_2 , является его частным решением.

Задача Коши для дифференциального уравнения 2-го порядка состоит в нахождении частного решения уравнения, удовлетворяющего двум начальным условиям: $y(x_0) = y_0$, $y'(x_0) = y_1$, где x_0 , y_0 , y_1 — заданные числа.

Для решения задачи Коши нужно подставить в общее решение и его производную заданные начальные условия

$$g(x_0, C_1, C_2) = y_0, g'(x_0, C_1, C_2) = y_1,$$

решить полученную систему двух уравнений относительно неизвестных C_1 и C_2 и подставить найденные значения постоянных C_1^0 , C_2^0 в общее решение: $y = \varphi(x, C_1^0, C_2^0)$ – решение задачи Коши.

4. Решение линейных дифференциальных уравнений 2-го порядка с постоянными коэффициентами

4.1. Линейные дифференциальные уравнения 2-го порядка.

Уравнение вида y'' + p(x)y' + q(x)y = f(x), где p(x), q(x) и f(x) – за-

данные функции, называется линейным дифференциальным уравнением 2-го порядка.

Отличительной его особенностью является то, что искомая функция y, и ее производные y' и y'' входят в уравнение линейно — в первых степенях и не перемножаются между собой.

Если $f(x) \equiv 0$, то уравнение называется линейным однородным дифференциальным уравнением и имеет вид: y'' + p(x)y' + q(x)y = 0. Если же $f(x) \neq 0$, то уравнение называется линейным неоднородным дифференциальным уравнением 2-го порядка.

Общее решение линейного однородного уравнения 2-го порядка имеет вид:

$$y_0 = C_1 y_1 + C_2 y_2,$$

где y_1 и y_2 — два линейно независимых частных решения этого уравнения $\left(\frac{y_1}{y_2} \neq const\right)$, а C_1 и C_2 — произвольные постоянные.

Общее решение линейного неоднородного уравнения имеет вид:

$$y = y_0 + \widetilde{y} ,$$

где y_0 — общее решение соответствующего однородного уравнения, \tilde{y} — какое-либо частное решение неоднородного уравнения.

4.2. Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами.

Если коэффициенты при y, y' и y'' – постоянные, то уравнение

$$y^{\prime\prime} + py^{\prime} + qy = 0,$$

где p и q — вещественные числа, называется линейным однородным дифференциальным уравнением 2-го порядка с постоянными коэффициентами.

Общее решение уравнения имеет вид: $y_0 = C_1 y_1 + C_2 y_2$, где y_1 и y_2 – два линейно независимых частных решения этого уравнения, C_1 и C_2 – произвольные постоянные.

Для нахождения линейно независимых частных решений y_1 и y_2 уравнения используется квадратное уравнение вида $k^2 + pk + q = 0$, которое называ-

ется характеристическим уравнением для уравнения.

В таблице 4 приведены виды функций y_1 и y_2 и вид общего решения уравнения в зависимости от вида корней характеристического уравнения.

Таблица 4.

Корни характеристи- ческого уравнения	Вид функций y_1 и y_2	Вид общего решения уравнения
Вещественные различные $k_1 \neq k_2$	$y_1 = e^{k_1 x},$ $y_2 = e^{k_2 x}$	$y_0 = C_1 e^{k_1 x} + C_2 e^{k_2 x}$
Вещественные равные $k_1 = k_2 = k$	$y_1 = e^{kx},$ $y_2 = xe^{kx}$	$y = C_1 e^{kx} + C_2 x e^{kx}$
Комплексно- сопряженные $k_{1,2}=\alpha\pm ioldsymbol{eta}$	$y_1 = e^{\alpha x} \cos \beta x,$ $y_2 = e^{\alpha x} \sin \beta x$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

<u>Пример 5.</u> Найти общее решение уравнения y'' + 16y = 0.

Решение. Характеристическое уравнение для данного однородного уравнения имеет вид $k^2+16=0$ (коэффициент при y' равен нулю). Его корнями являются комплексные числа $k_1=4i,\ k_2=-4i.$ Здесь $\alpha=0,\ \beta=4$. Тогда $y_1=e^{\alpha x}\cos\beta x=\cos 4x$, $y_2=e^{\alpha x}\sin\beta x=\sin 4x$ и общее решение данного уравнения: $y_0=C_1\cos 4x+C_2\sin 4x.$

OTBET: $y_0 = C_1 \cos 4x + C_2 \sin 4x$.

4.3. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами.

Уравнение вида y'' + py' + qy = f(x), где p и q — вещественные числа, называется линейным неоднородным дифференциальным уравнением 2-го порядка с постоянными коэффициентами.

Общее решение неоднородного уравнения имеет вид: $y=y_0+\widetilde{y}$, где y_0

- общее решение соответствующего однородного уравнения, а \tilde{y} - какоелибо частное решение неоднородного уравнения.

Построение общего решения неоднородного уравнения состоит из двух этапов. Сначала нужно найти общее решение соответствующего однородного уравнения y_0 , затем найти частное решение \widetilde{y} неоднородного уравнения.

Решение y_0 для линейного однородного дифференциального уравнения находят, используя характеристическое уравнение, а для нахождения частного решения \tilde{y} можно использовать либо метод вариации произвольных постоянных, либо метод неопределенных коэффициентов.

Метод вариации произвольных постоянных.

Метод вариации произвольных постоянных применяется для нахождения частного решения \tilde{y} линейного неоднородного дифференциального уравнения в тех случаях, когда известно общее решение y_0 соответствующего однородного уравнения.

Если известно $y_0 = C_1 y_1 + C_2 y_2$, то функция $\widetilde{y} = c_1(x) y_1 + c_2(x) y_2$ будет частным решением уравнения y'' + py' + qy = f(x), если функции $c_1(x)$ и $c_2(x)$ удовлетворяют так называемым «условиям вариации»:

$$\begin{cases} c_1'(x)y_1 + c_2'(x)y_2 = 0, \\ c_1'(x)y_1' + c_2'(x)y_2' = f(x). \end{cases}$$

Для нахождения частного решения \tilde{y} необходимо решить систему уравнений, затем проинтегрировать полученные функции:

$$c_1(x) = \int c_1'(x)dx, \quad c_2(x) = \int c_2'(x)dx,$$

и записать частное решение: $\tilde{y} = c_1(x)y_1 + c_2(x)y_2$. Константы интегрирования можно взять равными нулю, так как мы находим частное решение. Метод неопределенных коэффициентов.

Метод неопределенных коэффициентов применяется для нахождения частного решения \tilde{y} неоднородного уравнения с постоянными коэффициентами в тех случаях, когда функция f(x), стоящая в правой части этого уравне-

ния, имеет один из двух «специальных» видов: $f(x) = e^{\alpha x} \cdot P_n(x)$, где $P_n(x)$ — многочлен степени n: $P_n(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$, или $f(x) = e^{\alpha x} \cdot (M \cos \beta x + N \sin \beta x)$, где M и N — числа.

1) Если $f(x) = e^{\alpha x} \cdot P_n(x)$, то частное решение можно искать в виде:

$$\widetilde{y} = \begin{bmatrix} e^{\alpha x} \cdot Q_n(x), & \text{если } \alpha \neq k_1, & \alpha \neq k_2, \\ x \cdot e^{\alpha x} \cdot Q_n(x), & \text{если } \alpha = k_1, \text{ но } \alpha \neq k_2, \\ x^2 \cdot e^{\alpha x} \cdot Q_n(x), & \text{если } \alpha = k_1 = k_2, \end{bmatrix}$$

где k_1 , k_2 — корни характеристического уравнения, $Q_n(x)$ — многочлен степени n, записанный с неопределенными коэффициентами, подлежащими определению, например,

$$Q_0(x) = A$$
, $Q_1(x) = Ax + B$, $Q_2(x) = Ax^2 + Bx + C$, и т.д.

2) Если $f(x) = e^{\alpha x} \cdot (M \cos \beta x + N \sin \beta x)$, то частное решение \tilde{y} можно искать в виде:

$$\widetilde{y} = \begin{bmatrix} e^{\alpha x} \cdot (A\cos\beta x + B\sin\beta x), & \text{если } \alpha \pm \beta i \neq k_{1,2}, \\ x \cdot e^{\alpha x} \cdot (A\cos\beta x + B\sin\beta x), & \text{если } \alpha \pm \beta i = k_{1,2}, \end{bmatrix}$$

где k_1 , k_2 — корни характеристического уравнения, A и B — неизвестные постоянные, подлежащие определению.

<u>Пример 6.</u> Найти общее решение уравнения $y'' + 2y' - 8y = 12xe^{2x}$. Решение.

1 этап. Построим общее решение y_0 соответствующего однородного уравнения y''+2y'-8y=0. Составим для него характеристическое уравнение $k^2+2k-8=0$ и найдем корни: $k_1=-4$, $k_2=2$ — корни вещественные и различные. По таблице 4 определим вид линейно независимых частных решений однородного уравнения: $y_1=e^{-4x}$, $y_2=e^{2x}$ и запишем его общее решение: $y_0=C_1e^{-4x}+C_2e^{2x}$.

2 этап. Построим частное решение данного неоднородного уравнения \tilde{y} . В заданном уравнении $f(x) = 12xe^{2x}$ — правая часть 1-го специального вида:

 $f(x) = e^{\alpha x} \cdot P_n(x)$. Здесь $\alpha = 2$, $P_n(x) = 12x$, т.е. многочлен в правой части — 1-й степени (n = 1). Число $\alpha = 2$ совпадает с одним корнем характеристического уравнения $k_2 = 2$. Следовательно, частное решение \tilde{y} будем искать в виде:

$$\tilde{y} = x \cdot e^{\alpha x} \cdot Q_1(x) = xe^{2x} (Ax + B) = e^{2x} (Ax^2 + Bx),$$

где A, B — неизвестные коэффициенты, подлежащие определению.

Найдем производные \tilde{y}' , \tilde{y}'' и подставим \tilde{y} , \tilde{y}' , \tilde{y}'' в данное неоднородное уравнение $y'' + 2y' - 8y = 12xe^{2x}$, при этом для простоты используем следующую форму записи:

$$\begin{array}{ll}
-8 & \widetilde{y} = e^{2x}(Ax^2 + Bx) \\
2 & \widetilde{y}' = 2e^{2x}(Ax^2 + Bx) + e^{2x}(2Ax + B) \\
1 & \widetilde{y}'' = 4e^{2x}(Ax^2 + Bx) + 2e^{2x}(2Ax + B) + 2e^{2x}(2Ax + B) + e^{2x}2A
\end{array}$$

$$(-8+4+4)e^{2x}(Ax^2+Bx)+(2+2+2)e^{2x}(2Ax+B)+e^{2x}2A \equiv 12xe^{2x}.$$

Здесь слева от черты записаны коэффициенты, с которыми \tilde{y} , \tilde{y}' , \tilde{y}'' входят в уравнение, а под чертой приравниваются (тождественно) левая и правая части уравнения после подстановки в него \tilde{y} , \tilde{y}' , \tilde{y}'' с группировкой подобных членов.

После сокращения обеих частей тождества на $e^{2x} \neq 0$, получаем: $6(2Ax+B)+2A\equiv 12x$, откуда, приравнивая коэффициенты при x^1 и при x^0 в обеих частях тождества, получаем: $\begin{cases} 12A=12,\\ 6B+2A=0. \end{cases}$

Решая систему, находим $A=1,\ B=-\frac{1}{3}$. Подставляя найденные значения в \widetilde{y} , получим: $\widetilde{y}=e^{2x}\bigg(x^2-\frac{1}{3}x\bigg)$.

Объединяя результаты 2-х этапов, получаем общее решение уравнения:

$$y = C_1 e^{-4x} + C_2 e^{2x} + e^{2x} \left(x^2 - \frac{1}{3} x \right).$$
 Otbet: $y = C_1 e^{-4x} + C_2 e^{2x} + e^{2x} \left(x^2 - \frac{1}{3} x \right).$

5. Системы двух линейных дифференциальных уравнений и их решение порядка методом повышения порядка

Нормальная система двух линейных дифференциальных уравнений 1-го порядка имеет вид:

$$\begin{cases} \frac{dy}{dx} = a_1 y + b_1 z + f_1(x), \\ \frac{dz}{dx} = a_2 y + b_2 z + f_2(x), \end{cases}$$

где x — независимая переменная, y(x) и z(x) — неизвестные функции, $f_1(x)$ и $f_2(x)$ — известные функции a_1 , a_2 , b_1 , b_2 — коэффициенты. Общее решение системы имеет вид: $y = \varphi_1(x, C_1, C_2)$, $z = \varphi_2(x, C_1, C_2)$, где C_1 и C_2 — произвольные постоянные.

Для решения системы методом повышения порядка необходимо исключить одну из неизвестных функций. Для этого можно выразить одну из функций, например, z(x), из одного уравнения системы: z=z(y,y'), продифференцировать ее и подставить z и z' во второе уравнение системы. После упрощения получаем дифференциальное уравнение 2-го порядка вида y''+p(x)y'+q(x)y=f(x). После получения его решения $y=\varphi_1(x,C_1,C_2)$, следует найти вторую неизвестную функцию: $z=\varphi_2(x,C_1,C_2)$ и записать ответ.

Если в системе коэффициенты a_1 , a_2 , b_1 , b_2 – постоянные, то в результате применения метода повышения порядка получается линейное неоднородное уравнение с постоянными коэффициентами: y'' + py' + qy = f(x), решение которого рассмотрено выше.

Пример использования метода повышения порядка для решения систе-

мы двух линейных дифференциальных уравнений 1-го порядка приведен в образце выполнения контрольной работы.

ПРИМЕРНЫЙ ВАРИАНТ И ОБРАЗЕЦ ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ.

Задача 1. Даны многочлен f(x) и матрица A.

$$f(x)=3x^2-5x+2$$
, $A=\begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & -1 \\ -2 & 1 & 4 \end{pmatrix}$.

Требуется найти значение матричного многочлена f(A).

Задача 2. Решить систему трех линейных алгебраических уравнений с тремя

неизвестными методом Крамера:
$$\begin{cases} 3x_1 + 4x_2 + 2x_3 = 8, \\ 2x_1 - 3x_2 = 7, \\ x_1 + 5x_2 + x_3 = 0. \end{cases}$$

<u>Задача 3.</u> Вычислить пределы, применяя правила раскрытия неопределенностей, основные теоремы о конечных пределах, теоремы о бесконечно малых и бесконечно больших функциях. Ответы пояснить с точки зрения определения предела.

a)
$$\lim_{n \to \infty} \frac{1 + 2n - 3n^3}{2n^2 - 3}$$
, $n \in \mathbb{N}$; 6) $\lim_{x \to 2} \frac{\sqrt{1 + x} - \sqrt{5 - x}}{x^2 + x - 6}$; B) $\lim_{x \to 0} \frac{1 - \cos 4x}{e^{x^2} - e^x}$

Задача 4. Найти производную y'_x :

a)
$$y = \frac{x \cdot e^{-2x} + 3 \operatorname{tg} x}{1 + \sin 4x}$$
; 6) $2x^5 y^2 - x \ln y + 4x = 0$; B)
$$\begin{cases} x = \arcsin 2t - 3, \\ y = \sqrt{1 - 4t^2} + 1. \end{cases}$$

Задача 5. Провести полное исследование функции и построить ее график:

$$y = x^2 \cdot e^{1-x} .$$

Задача 6. Найти неопределенные интегралы:

a)
$$\int \frac{15x^{18}}{x^{19}+6} dx$$
, $\int (13x+1)\ln(14x)dx$, $\int \frac{x+11}{x^3+12x} dx$

Правильность полученных результатов проверить дифференцированием.

Задача 7. Вычислить с помощью определенного интеграла площадь плоской фигуры ограниченной в ДСК линиями l_1 : $y = x^2 + 1$ и l_2 : y = 2x + 4;

Задача 8. Дано дифференциальное уравнение 1-го порядка: $\operatorname{ctg} x \cdot y' + y = 0$ и точка $M\left(\frac{\pi}{3};1\right)$. Определить тип дифференциального уравнения. Найти общее решение дифференциального уравнения, уравнение интегральной кривой, проходящей через точку M и уравнения еще 4-х интегральных кривых (любых). Построить все эти кривые в системе координат.

Задача 9. Дано дифференциальное уравнение 2-го порядка: $y'' + 3y' - 4y = e^{-x}(\cos 3x + 8\sin 3x)$. Определить тип дифференциального уравнения и найти его общее решение, используя метод неопределенных коэффициентов.

Задача 10. Дана система линейных дифференциальных уравнений 1-го порядка $\begin{cases} x' = -4x - 6y \\ y' = -4x - 2y \end{cases}$ Найти общее решение методом повышения порядка.

Решение задачи 1.

Записываем матричный многочлен: $f(A) = 3A^2 - 5A + 2E$. Здесь E – единичная матрица той же размерности, что и A, т.е. 3-го порядка.

Найдем матрицу A^2 . При умножении матрицы A на себя используем правило «строка на столбец»:

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & -1 \\ -2 & 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & -1 \\ -2 & 1 & 4 \end{pmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 + 0 \cdot (-2) & 1 \cdot 2 + 2 \cdot 2 + 0 \cdot 1 & 1 \cdot 0 + 2 \cdot (-1) + 0 \cdot 4 \\ 0 \cdot 1 + 2 \cdot 0 + (-1)(-2) & 0 \cdot 2 + 2 \cdot 2 + (-1) \cdot 1 & 0 \cdot 0 + 2 \cdot (-1) + (-1) \cdot 4 \\ -2 \cdot 1 + 1 \cdot 0 + 4 \cdot (-2) & (-2) \cdot 2 + 1 \cdot 2 + 4 \cdot 1 & -2 \cdot 0 + 1 \cdot (-1) + 4 \cdot 4 \end{bmatrix} = \begin{pmatrix} 1 & 6 & -2 \\ 2 & 3 & -6 \\ -10 & 2 & 15 \end{pmatrix}.$$

Найдем матрицу 2E, используя правило умножения матрицы на число:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies 2E = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Теперь найдем значение матричного многочлена f(A), используя правило умножения матрицы на число и правило сложения матриц:

$$f(A) = 3A^{2} - 5A + 2E = 3 \begin{pmatrix} 1 & 6 & -2 \\ 2 & 3 & -6 \\ -10 & 2 & 15 \end{pmatrix} - 5 \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & -1 \\ -2 & 1 & 4 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 18 & -6 \\ 6 & 9 & -18 \\ -30 & 6 & 45 \end{pmatrix} - \begin{pmatrix} 5 & 10 & 0 \\ 0 & 10 & -5 \\ -10 & 5 & 20 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 - 5 + 2 & 18 - 10 + 0 & -6 - 0 + 0 \\ 6 - 0 + 0 & 9 - 10 + 2 & -18 + 5 + 0 \\ -30 + 10 + 0 & 6 - 5 + 0 & 45 - 20 + 2 \end{pmatrix} = \begin{pmatrix} 0 & 8 & -6 \\ 6 & 1 & -13 \\ -20 & 1 & 27 \end{pmatrix}.$$

Other:
$$f(A) = \begin{pmatrix} 0 & 8 & -6 \\ 6 & 1 & -13 \\ -20 & 1 & 27 \end{pmatrix}.$$

Решение задачи 2.

Решим систему с помощью формул Крамера. Для этого составляем главный определитель системы из коэффициентов при неизвестных в левых частях уравнений и три вспомогательных определителя:

$$\Delta = \begin{vmatrix} 3 & 4 & 2 \\ 2 & -3 & 0 \\ 1 & 5 & 1 \end{vmatrix}, \quad \Delta_1 = \begin{vmatrix} 8 & 4 & 2 \\ 7 & -3 & 0 \\ 0 & 5 & 1 \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} 3 & 8 & 2 \\ 2 & 7 & 0 \\ 1 & 0 & 1 \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} 3 & 4 & 8 \\ 2 & -3 & 7 \\ 1 & 5 & 0 \end{vmatrix}$$

Вычислим эти определители:

$$\Delta = \begin{vmatrix} 3 & 4 & 2 \\ 2 & -3 & 0 \\ 1 & 5 & 1 \end{vmatrix} = 3 \cdot (-3) \cdot 1 + 4 \cdot 0 \cdot 1 + 2 \cdot 2 \cdot 5 - 2 \cdot (-3) \cdot 1 - 3 \cdot 0 \cdot 5 - 4 \cdot 2 \cdot 1 = -9 + 20 + 6 - 8 = 9.$$

Так как $\Delta \neq 0$, то данная система имеет единственное решение.

$$\Delta_{1} = \begin{vmatrix} 8 & 4 & 2 \\ 7 & -3 & 0 \\ 0 & 5 & 1 \end{vmatrix} = 8 \cdot (-3) \cdot 1 + 4 \cdot 0 \cdot 0 + 2 \cdot 7 \cdot 5 - 2(-3) \cdot 0 - 8 \cdot 0 \cdot 5 - 4 \cdot 7 \cdot 1 = -24 + 70 - 28 = 18;$$

$$\Delta_2 = \begin{vmatrix} 3 & 8 & 2 \\ 2 & 7 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 3 \cdot 7 \cdot 1 + 8 \cdot 0 \cdot 1 + 2 \cdot 2 \cdot 0 - 2 \cdot 7 \cdot 1 - 3 \cdot 0 \cdot 0 - 8 \cdot 2 \cdot 1 = 21 - 14 - 16 = -9;$$

$$\Delta_3 = \begin{vmatrix} 3 & 4 & 8 \\ 2 & -3 & 7 \\ 1 & 5 & 0 \end{vmatrix} = 3(-3) \cdot 0 + 4 \cdot 7 \cdot 1 + 8 \cdot 2 \cdot 5 - 8(-3) \cdot 1 - 3 \cdot 7 \cdot 5 - 4 \cdot 2 \cdot 0 = 28 + 80 + 24 - 105 = 27.$$

Найдем решение системы по формулам Крамера:

$$x_1 = \frac{\Delta_1}{\Delta} = \frac{18}{9} = 2;$$
 $x_2 = \frac{\Delta_2}{\Delta} = \frac{-9}{9} = -1;$ $x_3 = \frac{\Delta_3}{\Delta} = \frac{27}{9} = 3.$

Ответ: решение системы, полученное с помощью формул Крамера:

$$x_1 = 2;$$
 $x_2 = -1;$ $x_3 = 3;$

Решение задачи 3а.

$$\lim_{n\to\infty}\frac{1+2n-3n^3}{2n^2-3}=\left(\frac{\infty}{\infty}\right)=\lim_{n\to\infty}\frac{n^3\left(\frac{1}{n^3}-\frac{2}{n^2}-3\right)}{n^2\left(2-\frac{3}{n^2}\right)}=\lim_{n\to\infty}\frac{n\left(\frac{1}{n^3}-\frac{2}{n^2}-3\right)}{2-\frac{3}{n^2}}=\lim_{n\to\infty}\frac{\delta\delta}{\delta}=0$$

.

Для раскрытия неопределенности $\left(\frac{\infty}{\infty}\right)$ при $n\to\infty$ использовано правило 1: в числителе и знаменателе вынесены за скобки старшие степени n. При вычислении предела учтено, что при $n\to\infty$ $\frac{1}{n^2}\to 0$, что $\lim_{n\to\infty} const = const$, использованы теоремы о конечных пределах и теорема о бесконечно больших функциях: $\frac{\delta\delta}{ozp} = \delta\delta \cdot ozp = \delta\delta$, если $ozp \neq \delta M$.

С точки зрения определения бесконечного предела последовательности $u_n = \frac{1+2n-3n^3}{2n^2-3}, \ n \in N$ полученный результат $\lim_{n \to \infty} u_n = \infty$ означает, что для достаточно больших значений номера n члены последовательности u_n становятся сколь угодно большими по модулю. Решение задачи 36.

$$\lim_{x \to 2} \frac{\sqrt{1+x} - \sqrt{5-x}}{x^2 + x - 6} = \left(\frac{0}{0}\right) = \lim_{x \to 2} \frac{(\sqrt{1+x} - \sqrt{5-x})(\sqrt{1+x} + \sqrt{5-x})}{(x^2 + x - 6)(\sqrt{1+x} + \sqrt{5-x})} =$$

$$= \lim_{x \to 2} \frac{(\sqrt{1+x})^2 - (\sqrt{5-x})^2}{(x - 2)(x + 3)(\sqrt{1+x} + \sqrt{5-x})} = \lim_{x \to 2} \frac{1 + x - 5 + x}{(x - 2)(x + 3)(\sqrt{1+x} + \sqrt{5-x})} =$$

$$= \lim_{x \to 2} \frac{2(x - 2)}{(x - 2)(x + 3)(\sqrt{1+x} + \sqrt{5-x})} = 2\lim_{x \to 2} \frac{1}{(x + 3)(\sqrt{1+x} + \sqrt{5-x})} =$$

$$= 2\frac{1}{5(\sqrt{3} + \sqrt{3})} = \frac{2}{10\sqrt{3}} = \frac{1}{5\sqrt{3}}.$$

Здесь для раскрытия неопределенности $\left(\frac{0}{0}\right)$ использовано правило 2: в числителе и знаменателе выделен критический множитель (x-2). Для его выделения в знаменателе использовано разложение многочлена на множители, а в числителе — домножение числителя и знаменателя на выражение $\sqrt{1+x}+\sqrt{5-x}$, сопряженное числителю $\sqrt{1+x}-\sqrt{5-x}$. При вычислении предела использованы теоремы о конечных пределах.

С точки зрения определения предела функции $y = f(x) = \frac{\sqrt{1+x} - \sqrt{5-x}}{x^2 + x - 6}$

при $x \to 2$ полученный результат $\lim_{x \to 2} f(x) = \frac{1}{5\sqrt{3}}$ означает, что для значений аргумента x, достаточно близких к точке x = 2, значения функции будут становиться сколь угодно близкими к числу $\frac{1}{5\sqrt{3}}$.

Решение задачи Зв.

$$\lim_{x\to 0} \frac{1-\cos 4x}{e^{x^2}-e^x} = \left(\frac{0}{0}\right) = \lim_{x\to -0} \frac{2\sin^2(2x)}{e^x(e^{x^2-x}-1)} = \begin{cases} \text{используем замены эквивалентных бм}: \\ \sin z \sim z \text{ при } z \to 0 \Rightarrow \sin^2(2x) \sim (2x)^2 = 4x^2 \text{ при } x \to 0 \end{cases} = e^{z^2-x} - 1 \sim (x^2-x) \text{ при } x \to 0 \end{cases}$$

$$= \lim_{x \to 0} \frac{2x^2}{e^x(x^2 - x)} = \lim_{x \to 0} \frac{2x^2}{e^x(x - 1)x} = \lim_{x \to 0} \frac{2x}{e^x(x - 1)} = \frac{0}{1(0 - 1)} = 0.$$

Для раскрытия неопределенности $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ использовано правило 2: в числителе и знаменателе выделен критический множитель (x-0)=x. Для его

выделения использован принцип замены эквивалентных бесконечно малых.

С точки зрения определения конечного предела функции $y = f(x) = \frac{1-\cos 4x}{e^{x^2} - e^x}$ при $x \to 0$ полученный результат $\lim_{x \to 0} f(x) = 0$ означает, что для значений аргумента x, достаточно близких к точке x = 0, значения функции будут становиться сколь угодно сколь угодно близкими к числу 0.

Ответы: a)
$$\lim_{n\to\infty} \frac{1+2n-3n^3}{2n^2-3} = \infty$$
, $n \in \mathbb{N}$; б) $\lim_{x\to 2} \frac{\sqrt{1+x}-\sqrt{5-x}}{x^2+x-6} = \frac{1}{5\sqrt{3}}$;
B) $\lim_{x\to 0} \frac{1-\cos 4x}{e^{x^2}-e^x} = 0$.

Решение задачи 4а.

Функция y(x) задана в явном виде и является отношением двух функ-

ций:
$$y = \frac{x \cdot e^{-2x} + 3tgx}{1 + \sin 4x} = \frac{u(x)}{v(x)}.$$
$$y'_x = \frac{(x \cdot e^{-2x} + 3tgx)' \cdot (1 + \sin 4x) - (x \cdot e^{-2x} + 3tgx) \cdot (1 + \sin 4x)'}{(1 + \sin 4x)^2}.$$

Найдем производные ее числителя и знаменателя:

$$(x \cdot e^{-2x} + 3 \operatorname{tg} x)' = x' \cdot e^{-2x} + x \cdot \left(e^{-2x}\right)' + 3 \cdot (\operatorname{tg} x)' = 1 \cdot e^{-2x} + x \cdot e^{-2x} \cdot (-2) + 3 \cdot \frac{1}{\cos^2 x} =$$

$$= (1 - 2x) \cdot e^{-2x} + \frac{3}{\cos^2 x}$$

$$(1 + \sin 4x)' = 1' + (\sin 4x)' = 0 + \cos 4x \cdot 4 = 4 \cos 4x$$
Теперь получаем:
$$y_x' = \frac{\left((1 - 2x) \cdot e^{-2x} + \frac{3}{\cos^2 x}\right) \cdot (1 + \sin 4x) - (x \cdot e^{-2x} + 3 \operatorname{tg} x) \cdot 4 \cos 4x}{(1 + \sin 4x)^2}.$$

Преобразование результата не производим, поскольку оно не дает существенного упрощения выражения для y'_x .

Решение задачи 4б.

Равенство $2x^5y^2 - x \ln y + 4x = 0$ есть уравнение вида F(x,y) = 0, которое неявно задает функцию y(x). Для нахождения y'_x продифференцируем обе части тождества $F(x,y(x)) \equiv 0$ по аргументу x и из полученного равенства найдем y'_x как решение линейного уравнения:

$$2x^{5}y^{2}(x) - x\ln(y(x)) + 4x = 0 \implies (2x^{5}y^{2}(x) - x\ln(y(x)) + 4x)'_{x} = (0)'_{x} \implies$$

$$2 \cdot 5x^{4} \cdot y^{2}(x) + 2x^{5} \cdot 2y(x) \cdot y'_{x} - \ln(y(x)) - \frac{x}{y(x)} \cdot y'_{x} + 4 = 0 \implies$$

$$10x^{4}y^{2} + 4x^{5}yy'_{x} - \ln y - \frac{xy'_{x}}{y} + 4 = 0 \implies 10x^{4}y^{3} + 4x^{5}y^{2}y'_{x} - y\ln y - xy'_{x} + 4y = 0 \implies$$

$$y'_{x}(4x^{5}y^{2} - x) = y\ln y - 10x^{4}y^{3} - 4y \implies y'_{x} = \frac{y\ln y - 10x^{4}y^{3} - 4y}{4x^{5}y^{2} - x}.$$

Производная неявно заданной функции y'_x зависит от аргумента x и функции y, поэтому в ответе нужно отразить их взаимосвязь:

$$y'_x = \frac{y \ln y - 10x^4 y^3 - 4y}{4x^5 y^2 - x}$$
, где $2x^5 y^2 - x \ln y + 4x = 0$.

Решение задачи 4в.

Функция y(x) задана параметрически: $\begin{cases} x = \arcsin 2t - 3, \\ y = \sqrt{1 - 4t^2} + 1. \end{cases}$

$$y'_{x} = \frac{y'_{t}}{x'_{t}} = \frac{\left(\sqrt{1 - 4t^{2} + 1}\right)'_{t}}{\left(\arcsin 2t - 3\right)'_{t}} = \frac{\frac{1}{2\sqrt{1 - 4t^{2}}} \cdot (-8t)}{\frac{1}{\sqrt{1 - (2t)^{2}}} \cdot 2} = \frac{-4t \cdot \sqrt{1 - 4t^{2}}}{2\sqrt{1 - 4t^{2}}} = -2t \implies y'_{x} = -2t$$

Производная параметрически заданной функции также является функцией, заданной параметрически, поэтому записываем результат в параметри-

ческой форме:
$$\begin{cases} x = \arcsin 2t - 3, \\ y'_x = -2t. \end{cases}$$

Ответы:

a)
$$y'_x = \frac{\left((1-2x)\cdot e^{-2x} + \frac{3}{\cos^2 x}\right)\cdot (1+\sin 4x) - (x\cdot e^{-2x} + 3tgx)\cdot 4\cos 4x}{(1+\sin 4x)^2}$$
;

б)
$$y'_x = \frac{y \ln y - 10x^4 y^3 - 4y}{4x^5 y^2 - x}$$
, где $2x^5 y^2 - x \ln y + 4x = 0$;

B)
$$\begin{cases} x = \arcsin 2t - 3, \\ y'_x = -2t. \end{cases}$$

<u>Решение задачи 5</u>. Проведем полное исследование функции $y = x^2 \cdot e^{1-x}$.

- 1) OOO: $x \in (-\infty; +\infty)$, O3O: $y \in [0; +\infty)$, T.K. $e^{1-x} > 0$, $x^2 \ge 0$.
- 2) Функция не является четной или нечетной, т.к. $f(-x) \neq f(x)$, $f(-x) \neq -f(x)$. Следовательно, эта функция общего вида. Функция непериодическая.
- 3) Функция непрерывна на всей ООФ. Точек разрыва нет.
- 4) Промежутки монотонности и экстремумы найдем при помощи 1-й производной: $y' = (x^2 \cdot e^{1-x})' = 2x \cdot e^{1-x} + x^2 \cdot e^{1-x} (-1) = (2x x^2) \cdot e^{1-x}$.

Критические точки по 1-й производной: $y' = 0 \implies x = 0, \ x = 2; \ y'_x$ не существует — таких точек нет.

Проверим выполнение достаточных условий монотонности и экстремума по знаку 1-й производной. На рис. 33 видно, что функция возрастает на интервале $x \in (0; 2)$, убывает на интервалах $x \in (-\infty; 0)$ и $x \in (2; +\infty)$.

В точке
$$x=0$$
 минимум функции, $y_{min}=y(0)=0^2\cdot e^1=0$, в точке $x=2$ максимум, $y_{max}=y(2)=2^2\cdot e^{1-2}=\frac{4}{e}\approx 1,5$.

5) Выпуклость, вогнутость графика и точки перегиба:

$$y'' = (2x - x^2) \cdot e^{1-x} = (2 - 2x) \cdot e^{1-x} + (2x - x^2) \cdot e^{1-x} (-1) = (2 - 2x - 2x + x^2) \cdot e^{1-x} \Rightarrow y'' = (2 - 4x + x^2) \cdot e^{1-x}.$$

Критические точки по 2-й производной: $x_{1,2}=2\pm\sqrt{2}$, т.е. $x_1\approx 0.6$, $x_2\approx 3.4$.

Проверим выполнение достаточных условий выпуклости, вогнутости графика функции по знаку 2-й производной. На рис. 34 видно, что график

функции выпуклый на интервале $x \in (2 - \sqrt{2}; 2 + \sqrt{2})$, и вогнутый на интерва-

$$x = \frac{1}{1} =$$

региба: $y_1 = (2 + \sqrt{2})^2 \cdot e^{-1 - \sqrt{2}} \approx 1.0$, $y_2 = (2 - \sqrt{2})^2 \cdot e^{-1 + \sqrt{2}} \approx 0.5$.

6) Найдем наклонные асимптоты графика y = kx + b при $x \to -\infty$ и при $x \to +\infty$.

$$k = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^2 \cdot e^{1-x}}{x} = \lim_{x \to -\infty} (x \cdot e^{1-x}) = (\delta\delta \cdot \delta\delta) = -\infty$$

(здесь при $x \to -\infty$ обе функции под знаком предела являются бесконечно большими). Следовательно, при $x \to -\infty$ наклонных асимптот нет.

При $x \rightarrow +\infty$ получаем:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 \cdot e^{1-x}}{x} = \lim_{x \to +\infty} x \cdot e^{1-x} = \left(\delta\delta \cdot \delta M\right) = \lim_{x \to +\infty} \frac{x}{e^{x-1}} = \left(\frac{\infty}{\infty}\right) =$$

$$= \begin{cases} \text{правило} \\ \text{Лопиталя} \end{cases} = \lim_{x \to +\infty} \frac{1}{e^{x-1}} = \left(\frac{o z p}{\delta\delta}\right) = 0 ;$$

$$b = \lim_{x \to +\infty} \left(f(x) - kx\right) = \lim_{x \to +\infty} (x^2 \cdot e^{1-x} - 0) = \lim_{x \to +\infty} \frac{x^2}{e^{x-1}} = \left(\frac{\infty}{\infty}\right) = \begin{cases} \text{правило} \\ \text{Лопиталя} \end{cases} = \lim_{x \to +\infty} \frac{2x}{e^{x-1}} = \left(\frac{\delta\delta}{\infty}\right) = \frac{1}{2} \left(\frac{\delta\delta}{\delta}\right) =$$

имеет горизонтальную асимптоту, ее уравнение: y = 0.

7) Точка пересечения с осями координат – единственная: (0; 0), т.к.

$$y = 0 \iff x^2 = 0 \iff x = 0$$
.

8) Построение графика начинаем с построения асимптоты y = 0 (она совпадает с осью абсцисс), затем отмечаем точки графика, в которых функция имеет экстремумы: точку минимума (0; 0), максимума $\left(2; \frac{4}{e}\right)$, и точки перегиба $(x_1; y_1)$ и $(x_2; y_2)$, где $x_1 \approx 3,4$, $y_1 \approx 1,0$, $x_2 \approx 0,6$, $y_2 \approx 0,5$. После этого выполняем по-

строение графика функции $y = x^2 \cdot e^{1-x}$ сначала на промежутках $x \in \left(-\infty; 2 - \sqrt{2}\right)$

и $x \in (2 + \sqrt{2}; +\infty)$, затем на промежутке $x \in (2 - \sqrt{2}; 2 + \sqrt{2})$.

На графике (рис. 35) видно сближение кривой с асимптотой y = 0 при $x \to +\infty$ и перегибы кривой.

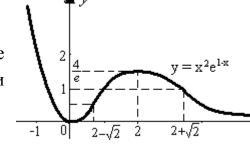


Рис. 35.

Ответ: график на рис. 35.

Решение задачи 6.

a) Так как $\int \frac{dx}{x} = \ln|x| + C$, получим:

$$\int \frac{15x^{18}}{x^{19} + 6} dx = \frac{15}{19} \int \frac{19x^{18}}{x^{19} + 6} dx = \frac{15}{19} \int \frac{(x^{19} + 6)'dx}{x^{19} + 6} = \frac{15}{19} \int \frac{d(x^{19} + 6)}{x^{19} + 6} = \frac{15}{19} \ln |x^{19} + 6| + C.$$

Проверим результат дифференцированием:

$$\left(\frac{15}{19}\ln\left|x^{19} + 6\right|\right)' = \frac{15}{19}\frac{1}{x^{19} + 6} \cdot (19x^{18}) = \frac{15x^{18}}{x^{19} + 6},$$

Otbet: $\int \frac{15x^{18}}{x^{19}+6} dx = \frac{15}{19} \ln \left| x^{19} + 6 \right| + C$

б) Интеграл $\int (13x+1)\ln(14x)dx$ относится к типу интегралов, берущихся по частям; это интеграл так называемого второго типа.

$$\int (13x+1)\ln(14x) \, dx = \begin{vmatrix} u = \ln(14x); \, du = \frac{1}{14x} \cdot 14 dx = \frac{dx}{x}; \\ dv = (13x+1) dx; \, v = \frac{13}{2}x^2 + x \end{vmatrix} = \left(\frac{13}{2}x^2 + x\right)\ln(14x) - \int \left(\frac{13}{2}x^2 + x\right) \frac{dx}{x} =$$

$$= (6.5x^2 + x)\ln(14x) - \int (6.5x+1) dx = (6.5x^2 + x)\ln(14x) - 3.25x^2 - x + C.$$

Проверим результат дифференцированием:

$$\left((6.5x^2 + x)\ln(14x) - 3.25x^2 - x \right)' = (13x + 1)\ln(14x) + \frac{(6.5x^2 + x)14}{14x} - 6.5x - 1 = (13x + 1)\ln(14x) + 6.5x + 1 - 6.5x - 1 = (13x + 1)\ln(14x).$$

OTBET:
$$\int (13x+1)\ln(14x)dx = (6.5x^2 + x)\ln(14x) - 3.25x^2 - x + C.$$

в) Подынтегральная функция является правильной рациональной дробью, поэтому ее можно представить в виде суммы простейших дробей:

$$\frac{x+11}{x^3+12x} = \frac{x+11}{x(x^2+12)} = \frac{A}{x} + \frac{Bx+C}{x^2+12}, \text{ отсюда}$$

$$x+11 \equiv A(x^2+12) + (Bx+C)x, \text{ или} \quad x+11 \equiv (A+B)x^2 + Cx+12A.$$

Неопределенные коэффициенты A, B, C найдем, приравнивая коэффициенты при одинаковых степенях x в левой и правой частях тождества:

при
$$x^0$$
: $11 = 12A \Rightarrow A = 11/12$;
при x^1 : $1 = C \Rightarrow C = 1$;
при x^2 : $0 = A + B \Rightarrow B = -A = -11/12$.

Коэффициенты A, B, C можно найти другим способом — подставляя в тождество «удобные» значения x (метод частных значений):

$$x = 0$$
: $11 = 12A$,
 $x = 1$: $12 = A + B + C + 12A$,
 $x = -1$: $10 = A + B - C + 12A$.

Из первого уравнения получим: A=11/12. Почленно вычитая два последних равенства, получим: $2C=2\Rightarrow C=1$, и из последнего уравнения B=10-A+C-12A=-A=-11/12. Таким образом, A=11/12, B=-11/12, C=1.

$$\int \frac{x+11}{x^3+12x} dx = \int \left(\frac{11/12}{x} + \frac{(-11/12)x+1}{x^2+12}\right) dx = \frac{11}{12} \int \frac{dx}{x} - \frac{11}{12} \int \frac{x}{x^2+12} dx + \int \frac{dx}{x^2+12} = \frac{11}{12} \ln|x| - \frac{11}{24} \ln(x^2+12) + \frac{1}{2\sqrt{3}} \arctan \left(\frac{x}{2\sqrt{3}} + C\right).$$

Здесь использовано: $\int \frac{x}{x^2 + 12} \, dx = \frac{1}{2} \int \frac{2x}{x^2 + 12} \, dx = \int \frac{d(x^2 + 12)}{x^2 + 12} = \ln \left| x^2 + 12 \right| + C,$ $\int \frac{dx}{x^2 + 12} = \int \frac{dx}{x^2 + (2\sqrt{3})^2} = \frac{1}{2\sqrt{3}} \operatorname{arctg} \frac{x}{2\sqrt{3}} + C.$ $\left(\frac{11}{12} \ln \left| x \right| - \frac{11}{24} \ln (x^2 + 12) + \frac{1}{2\sqrt{3}} \operatorname{arctg} \frac{x}{2\sqrt{3}} \right)' = \frac{11}{12x} - \frac{11(2x)}{24(x^2 + 12)} + \frac{1}{2\sqrt{3}} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{2\sqrt{3}} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} = \frac{1}{1 + \left(\frac{x}{2\sqrt{3}} \right)^2} \cdot \frac{1}{1 + \left(\frac{x}{2$

$$= \frac{11}{12x} - \frac{11x}{12(x^2 + 12)} + \frac{1}{12 + x^2} = \frac{11(x^2 + 12) - 11x^2 + 12x}{12x(x^2 + 12)} = \frac{12(11 + x)}{12x(x^2 + 12)} = \frac{x + 11}{x^3 + 12x}.$$

OTBET:
$$\int \frac{x+11}{x^3+12x} dx = \frac{11}{12} \ln|x| - \frac{11}{24} \ln(x^2+12) + \frac{1}{2\sqrt{3}} \arctan \frac{x}{2\sqrt{3}} + C$$

Решение задачи 7.

Найдем точки пересечения кривых, для чего составим и решим систему $\begin{cases} y=x^2+1 \\ y=2x+4 \end{cases}.$ Приравнивая правые части, получаем уравнение $x^2-2x-3=0$, ре-

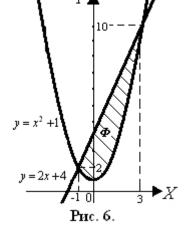
шив которое, найдем абсциссы точек пересечения: x = -1, x = 3.

Построим чертеж (рис. 6). На рисунке видно, что $f_2(x) = 2x + 4 > x^2 + 1 = f_1(x)$ на промежутке [-1; 3].

Вычислим площадь фигуры, ограниченной заданными линиями:

$$S_{\Phi} = \int_{-1}^{3} (2x + 4 - x^2 - 1) dx = \int_{-1}^{3} (2x + 3 - x^2) dx = \left(x^2 + 3x - \frac{x^3}{3} \right) \Big|_{-1}^{3} =$$

$$= (9 + 9 - 9) - \left(1 - 3 + \frac{1}{3} \right) = 9 + \frac{5}{3} = 10 \frac{2}{3} \approx 10.7.$$



Ответ: $S_{\phi} = 10\frac{2}{3} \approx 10,7$ единиц площади.

<u>Решение задачи 8.</u> Данное дифференциальное уравнение $ctgx \cdot y' + y = 0$ — уравнение с разделяющимися переменными. Заменим y' на $\frac{dy}{dx}$ и разделим переменные, умножая обе части уравнения на $\frac{tgx\,dx}{y}$:

$$\operatorname{ctg} x \frac{dy}{dx} = -y \implies \frac{dy}{y} = -\operatorname{tg} x dx$$
.

Интегрируя полученное равенство, получим:

$$\int \frac{dy}{y} = -\int \frac{\sin x}{\cos x} dx + C \quad \Rightarrow \quad \int \frac{dy}{y} = \int \frac{d(\cos x)}{\cos x} dx + C \quad \Rightarrow \quad \ln|y| = \ln|\cos x| + \ln|C_1|,$$

откуда $\ln |y| = \ln |C_1 \cdot \cos x|$ $\Rightarrow y = \pm C_1 \cos x$. Заменяя $\pm C_1 = C$, запишем общее решение данного уравнения: $y = C \cos x$.

Найдем уравнение интегральной кривой, проходящей через точку $M\left(\frac{\pi}{3};1\right)$, т.е. частное решение, удовлетворяющее заданному начальному усло-

вию: $y\left(\frac{\pi}{3}\right) = 1$. Для этого подставим в общее решение вместо x, y числа $\frac{\pi}{3}$, 1 соответственно: $1 = C\cos\frac{\pi}{3} \implies 1 = \frac{1}{2}C \implies C = 2$. Подставляя найденное

значение C в общее решение, получим искомое частное решение (уравнение интегральной кривой, проходящей через точку M): $y_1 = 2\cos x$.

$$C=0 \implies y_2=0; \quad C=1 \implies y_3=\cos x;$$

 $C=-1 \implies y_4=-\cos x; \quad C=-2 \implies y_5=-2\cos x.$

Построим все эти кривые в системе координат (рис. 9).

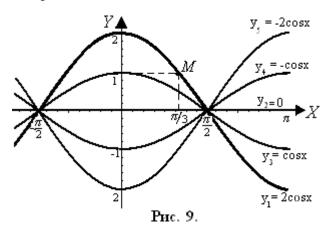
Ответы: $y = C \cos x$;

$$y_1 = 2\cos x, \ y_2 = 0,$$

$$y_3 = \cos x, \quad y_4 = -\cos x,$$

$$y_5 = -2\cos x$$
.

Интегральные кривые изображены на рис. 9.



<u>Решение задачи 9.</u> Уравнение $y'' + 3y' - 4y = e^{-x}(\cos 3x + 8\sin 3x)$ — это линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами. Его общее решение имеет вид $y = y_0 + \tilde{y}$. Найдем его в 2 этапа.

1 этап. Построим общее решение y_0 соответствующего однородного уравнения y'' + 3y' - 4y = 0. Составим для него характеристическое уравнение $k^2 + 3k - 4 = 0$ и найдем его корни: $k_1 = -4$, $k_2 = 1$. По таблице 4 определим вид его общего решения $y_0 = C_1 e^{-4x} + C_2 e^x$.

2 этап. Построим частное решение \tilde{y} данного неоднородного уравнения при

помощи метода неопределенных коэффициентов. В заданном уравнении $f(x) = e^{-x}(\cos 3x + 8\sin 3x) - \text{правая часть 2-го специального вида:}$ $f(x) = e^{\alpha x} \cdot (M\cos \beta x + N\sin \beta x), \quad \text{где} \qquad \alpha = -1, \ \beta = 3, \ M = 1, \ N = 8.$ Числа $\alpha \pm \beta i = -1 \pm 3i \neq k_{1,2}, \text{тогда частное решение } \tilde{y} \text{ будем искать в виде:}$

$$\widetilde{y} = e^{-x} (A\cos 3x + B\sin 3x),$$

где A и B — неизвестные постоянные. Подставим \tilde{y} , \tilde{y}' , \tilde{y}'' в данное неодно-родное уравнение:

$$\begin{array}{ll}
-4 & \widetilde{y} = e^{-x} (A\cos 3x + B\sin 3x), \\
3 & \widetilde{y}'' = -e^{-x} (A\cos 3x + B\sin 3x) + e^{-x} (-3A\sin 3x + 3B\cos 3x), \\
1 & \widetilde{y}'' = e^{-x} (A\cos 3x + B\sin 3x) - e^{-x} (-3A\sin 3x + 3B\cos 3x) - \\
& -e^{-x} (-3A\sin 3x + 3B\cos 3x) + e^{-x} (-9A\cos 3x - 9B\sin 3x), \\
\hline
-15e^{-x} (A\cos 3x + B\sin 3x) + e^{-x} (-3A\sin 3x + 3B\cos 3x) \equiv e^{-x} (\cos 3x + 8\sin 3x).
\end{array}$$

Сократим обе части тождества на e^{-x} ($e^{-x} \neq 0$) и приравняем коэффициенты при $\cos 3x$ и при $\sin 3x$ в левой и правой частях тождества.

При
$$\cos 3x$$

$$\begin{cases} -15A + 3B = 1, \\ -15B - 3A = 8. \end{cases}$$

Решая полученную систему двух уравнений с двумя неизвестными, находим $A = -\frac{1}{6}, \quad B = -\frac{1}{2}.$ Подставив найденные значения A и B в выражение \widetilde{y} , получим частное решение неоднородного уравнения:

$$\widetilde{y} = e^{-x} \left(-\frac{1}{6} \cos 3x - \frac{1}{2} \sin 3x \right).$$

Объединяя результаты 2-х этапов, запишем ответ – общее решение данного уравнения.

Otbet:
$$y = C_1 e^{-4x} + C_2 e^x + e^{-x} \left(-\frac{1}{6} \cos 3x - \frac{1}{2} \sin 3x \right)$$
.

Решение задачи 10. Для решения системы $\begin{cases} x' = -4x - 6y \\ y' = -4x - 2y \end{cases}$ методом повышения порядка исключим из нее одну из функций — y(t).

Выразим y(t) из первого уравнения системы: $y = \frac{1}{6}(-4x - x')$, продиффе-

ренцируем ее: $y' = \frac{1}{6}(-4x'-x'')$ и подставим у и y' во второе уравнение си-

стемы:

$$\frac{1}{6}(-4x'-x'') = -4x - \frac{2}{6}(-4x-x').$$

$$4x' + x'' = 24x + 2(-4x-x')$$

После упрощения получаем дифференциальное уравнение 2-го порядка относительно функции y(x): x'' + 6x' - 16x = 0.

Это линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами. Найдем его общее решение, составив характеристическое уравнение

$$k^2+6k-16=0$$
 и найдем корни: $k_{1,2}=\frac{-6\pm\sqrt{100}}{2}$, k_1 =2, k_2 =-8 – корни дей-

ствительные различные, определим вид общего решения однородного уравнения: $x = C_1 e^{2t} + C_2 e^{-8t}$ Найдем вторую неизвестную функцию:

$$y = \frac{1}{6}(-4x - x') = \frac{1}{6}\left(-4C_1e^{2t} - 4C_2e^{-8t} - 2C_1e^{2t} + 8C_2e^{-8t}\right) = -C_1e^{2t} + \frac{2}{3}C_2e^{-8t}$$

Otbet:
$$x = C_1 e^{2t} + C_2 e^{-8t}$$
; $y = -C_1 e^{2t} + \frac{2}{3} C_2 e^{-8t}$

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Каждый вариант контрольной работы содержит 10 задач по темам «Элементы линейной алгебры. Дифференциальное и интегральное исчисления функции одной переменной. Дифференциальные уравнения».

Перед выполнением контрольной работы студенту необходимо изучить теоретический материал по данной теме и закрепить его решением задач, ознакомиться со справочным материалом и образцом выполнения примерного варианта контрольной работы.

Задания для всех вариантов общие; студенту следует выбрать из условия каждой задачи данные, необходимые для ее решения, в соответствии со своим вариантом. Оформление контрольной работы должно соответствовать установленным правилам и требованиям. Необходимые чертежи должны выполняться четко, с соответствующими подписями и комментариями (см. образец выполнения примерного варианта работы).

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Задача 1. Даны многочлен f(x) и матрица A. Требуется найти значение матричного многочлена f(A).

№ вари- анта	многочлен $f(x)$	Матрица A
1	$f(x) = -x^2 + 5x + 3$	$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \\ 2 & -3 & 1 \end{pmatrix}$
2	$f(x) = -2x^2 + 4x + 7$	$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 0 & -1 \\ -1 & 5 & 2 \end{pmatrix}$
3	$f(x) = 3x^2 + x + 2$	$A = \begin{pmatrix} 2 & -2 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 4 \end{pmatrix}$

4	$f(x) = 2x - x^2 - 3$	$A = \begin{pmatrix} 2 & 0 & -1 \\ -1 & 2 & -4 \\ 3 & 1 & 2 \end{pmatrix}$
5	$f(x) = 3x + x^2 - 2$	$A = \begin{pmatrix} 2 & 3 & -2 \\ 3 & 1 & 0 \\ 1 & 5 & -5 \end{pmatrix}$
6	$f(x) = 2(1-x)^2$	$A = \begin{pmatrix} 2 & 3 & -2 \\ 3 & 1 & 1 \\ 0 & 4 & 3 \end{pmatrix}$
7	$f(x) = (3-x)^2$	$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 0 & 1 \\ 1 & 7 & -5 \end{pmatrix}$
8	$f(x) = -3(x^2 - x + 1)$	$A = \begin{pmatrix} 1 & 1 & -4 \\ 1 & 3 & -2 \\ 0 & 2 & 1 \end{pmatrix}$
		(3 4 -5)

8	$f(x) = -3(x^2 - x + 1)$	$A = \begin{pmatrix} 1 & 1 & -4 \\ 1 & 3 & -2 \\ 0 & 2 & 1 \end{pmatrix}$
9	$f(x) = 2x - x^2 + 1$	$A = \begin{pmatrix} 3 & 4 & -5 \\ 0 & 1 & 2 \\ -1 & 1 & 2 \end{pmatrix}$
10	$f(x) = 4\left(x^2 - x\right) - 3$	$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -1 & 3 \\ 3 & 0 & 2 \end{pmatrix}$

Задача 2. Дана система трех линейных алгебраических уравнений с тремя неизвестными. Решить систему методом Крамера. Выполнить проверку.

№ вари-	Система уравнений	№ вари-	Система уравнений
анта	спотема уравнении	анта	опотоми уривнопин

1	$\begin{cases} x_1 + 2x_2 + x_3 = -1, \\ -2x_1 + 3x_2 - 3x_3 = 10, \\ 3x_1 + 5x_3 = -11. \end{cases}$	6	$\begin{cases} x_1 + 2x_2 - x_3 = 0, \\ 3x_1 - x_3 = 10, \\ 2x_1 - 3x_2 + 2x_3 = 10. \end{cases}$
2	$\begin{cases} x_1 + 2x_2 + 4x_3 = 9, \\ -x_1 + x_2 + 3x_3 = 2, \\ -x_2 + x_3 = 3. \end{cases}$	7	$\begin{cases} -x_1 + x_3 = 5, \\ x_1 + x_2 - 2x_3 = -9, \\ 2x_1 + 2x_2 + x_3 = -3. \end{cases}$
3	$\begin{cases} x_1 + x_2 + 2x_3 = 3, \\ 2x_1 - x_2 + 2x_3 = -2, \\ x_2 - 2x_3 = 0. \end{cases}$	8	$\begin{cases} -3x_1 + x_2 = -5, \\ 2x_1 - 3x_2 + x_3 = 4, \\ -x_1 + 4x_2 - 2x_3 = -1. \end{cases}$
4	$\begin{cases} 2x_1 - x_2 - x_3 = 2, \\ 4x_1 + x_2 + x_3 = 4, \\ x_1 + x_3 = -1. \end{cases}$	9	$\begin{cases} x_1 - 3x_2 + 2x_3 = 4, \\ x_2 + 2x_3 = 0, \\ x_1 + x_2 + 3x_3 = -3. \end{cases}$
5	$\begin{cases} 3x_1 - 4x_2 - 2x_3 = -1, \\ -2x_1 + x_2 = 3, \\ x_1 + x_2 + 3x_3 = -9. \end{cases}$	10	$\begin{cases} x_1 - 2x_2 + 3x_3 = 8, \\ 2x_1 + x_3 = -1, \\ x_1 + 2x_2 - 3x_3 = -14. \end{cases}$

Задача 3. Вычислить пределы, применяя правила раскрытия неопределенностей, основные теоремы о конечных пределах, теоремы о бесконечно малых и бесконечно больших функциях. Ответы пояснить с точки зрения определения предела.

№ варианта	Пределы	
1	a) $\lim_{n \to \infty} \frac{2n - n^2}{n^2 + 5n - 2}$, $n \in \mathbb{N}$; 6) $\lim_{x \to 8} \frac{\sqrt{3x + 1} - 5}{x^2 - 8x}$; B) $\lim_{x \to 0} \frac{tg(\sin \sqrt{x})}{e^{3x} - 1}$	
2	a) $\lim_{n \to \infty} \frac{n^3 + 7n^2 + n - 1}{6n^2 + 3n}$, $n \in \mathbb{N}$; 6) $\lim_{x \to 9} \frac{\sqrt{x} - 3}{x^2 - 8x - 9}$;	

	B) $\lim_{x \to 0} \frac{2^{3x} - 1}{\sin \sqrt{2x}}$
3	a) $\lim_{n \to \infty} \frac{n^4 + 2}{3n^4 - 10}$, $n \in \mathbb{N}$; 6) $\lim_{x \to 3} \frac{2x^2 + 5x - 3}{\sqrt{x^2 - 5} - 2}$;
	B) $\lim_{x\to 0} \frac{\cos^2 x - 1}{\ln(1+2x)}$.
4	a) $\lim_{n \to \infty} \frac{2n^2 + 4n - 1}{n^2 - 9n}$, $n \in \mathbb{N}$; 6) $\lim_{x \to 4} \frac{\sqrt{2x + 1} - 3}{x^2 - 16}$;
	B) $\lim_{x\to 0} \frac{arctg(3x-x^2)}{5^{1-x^2}-5}$
5	a) $\lim_{n \to \infty} \frac{3n^3 - n^2 + 3n - 4}{n^3 + 12n^2 + 5n + 3}$, $n \in \mathbb{N}$; 6) $\lim_{x \to 2} \frac{\sqrt{x + 2} - \sqrt{3x - 2}}{2x^2 - 3x - 2}$;
	B) $\lim_{x \to 0} \frac{\ln(1+\sin 6x)}{\arcsin 3x}$
6	a) $\lim_{n \to \infty} \frac{12 + n + n^2}{7n + 25}$, $n \in \mathbb{N}$; 6) $\lim_{x \to -1} \frac{\sqrt{2 + x} - 1}{x^2 - 3x - 4}$;
	B) $\lim_{x\to 0} \frac{\lg(x \cdot \sin x)}{4^{3x} - 4^x}$.
7	a) $\lim_{n \to \infty} \frac{3n^2 - 1}{n^2 + 4n + 4}$, $n \in \mathbb{N}$; 6) $\lim_{x \to 1} \frac{(x - 1)^3}{\sqrt{2 - x^2} - x}$;
,	B) $\lim_{x \to 0} \frac{\ln(1-5x)}{\cos 3x - 1}$; Γ) $\lim_{x \to \infty} \left(\frac{8x + 2}{8x + 5}\right)^{x - 4}$.
8	a) $\lim_{n \to \infty} \frac{5n^2 - 10n + 3}{1 - 2n}$, $n \in \mathbb{N}$; 6) $\lim_{x \to 5} \frac{\sqrt{6 - x} - \sqrt{x - 4}}{x^2 - 6x + 5}$;
	B) $\lim_{x \to 0} \frac{\sin 3x - \sin x}{\arctan \sqrt{5x}}$
9	a) $\lim_{n \to \infty} \frac{6n^2 + 12n - 1}{n^2 + 3}$, $n \in \mathbb{N}$; 6) $\lim_{x \to -1} \frac{4x^2 - 5x - 9}{x + \sqrt{5x + 6}}$;
,	B) $\lim_{x \to 0} \frac{\cos 4x - \cos 2x}{\arcsin \left(x^3\right)}$

a)
$$\lim_{n \to \infty} \frac{n^5 + n^3 + 3n}{2n^4 - n^2 - n^5}$$
, $n \in \mathbb{N}$; 6) $\lim_{x \to -2} \frac{\sqrt{5 + x} - \sqrt{1 - x}}{\sqrt{x^2 - 4}}$;
B) $\lim_{x \to 0} \frac{\sin(e^{3x} - 1)}{\ln(1 + 2x^3)}$

Задача 4. Найти производную y'_x :

№ вари-	Функции		
анта	a)	б)	в)
1	$y = \frac{\arctan 5x}{1 + \ln 3x}$	$3x^2 + 4xy - \sin y = 0$	$\begin{cases} x = t^2 \cdot e^{3t}, \\ y = t \cdot e^{-t} \end{cases}$
2	$y = \frac{\cos 5x}{1 + 3x^2}$	$e^y + 2xy - 6x = 0$	$\begin{cases} x = \sqrt{1 + 3t^2} \\ y = \ln(1 + 3t^2) \end{cases}$
3	$y = \frac{e^{4x}}{2 - x + 3x^2}$	$3xy - \cos y + 2x^3 = 0$	$\begin{cases} x = \arcsin 3t, \\ y = \ln(1 - 9t^2) \end{cases}$
4	$y = \frac{5x^2 + 4}{\arccos(3x)}$	$\sin y + xy^2 - 5x^3 = 0$	$\begin{cases} x = t \cdot \text{ctg2t}, \\ y = 2\sqrt{t^5} - 3t \end{cases}$
5	$y = \frac{\ln(5x+2)}{1+2x+x^2}$	$4xy - \sqrt{y} - x^5 = 0$	$\begin{cases} x = \frac{1}{\cos 5t}, \\ y = \text{tg5}t - 4 \end{cases}$
6	$y = \frac{4^{x+2}}{5x + 3x^2}$	$\arcsin x + x^3 y^3 - 3y^4 = 0$	$\begin{cases} x = \ln t \cdot (t+1), \\ y = \frac{1}{2}t^2 + t \end{cases}$
7	$y = \frac{\ln 5x}{\cos 4x}$	$xy^2 - e^y + 3x^2 = 0$	$\begin{cases} x = \frac{1}{(t+1)^2}, \\ y = \frac{t-4}{t+1} \end{cases}$
8	$y = \frac{\arctan 5x}{\sqrt{1+3x}}$	$xy^2 - \ln y - 7x = 0$	$\begin{cases} x = t \cdot \sin 2t, \\ y = t - \cos t \end{cases}$
9	$y = \frac{\operatorname{arcctg7}x}{3x^2 - 2}$	$3e^{2y} - xy + 6x^2 = 0$	$\begin{cases} x = 2t - \ln^2 t, \\ y = \frac{t^2 - 1}{t} \end{cases}$

10
$$y = \frac{e^{4x+3}}{\ln(x)+2}$$
 $x^5 y^3 - tgx - 2y = 0$
$$\begin{cases} x = \arccos t, \\ y = 2 + \sqrt{1 - t^2} \end{cases}$$

Задача 6. Провести полное исследование функции и построить ее график.

№ вари- анта	Функция
1	$y = e^{4x - x^2 - 5}$
2	$y = \ln(x^2 - 2x)$
3	$y = \frac{x}{\sqrt{x^2 + 1}}$
4	$y = (3-x)e^{x-2}$
5	$y = \frac{1}{\ln x}$
6	$y = \sqrt[3]{x^3 + 1}$
7	$y = xe^{-x}$
8	$y = \sqrt{x} \cdot \ln x$
9	$y = \frac{e^x}{1 - x}$
10	$y = \ln\left(\frac{1-x}{1+x}\right)$

Задача 6. Найти неопределенные интегралы. Правильность полученных результатов проверить дифференцированием. Здесь n- номер варианта.

№ вари-	Интегралы
анта	Till Fulls

n
$$a) \int \frac{x^{n+1}}{x^{n+2} - 2n + 9} dx; \qquad \delta) \int ((n+1)x + 1) \ln((11-n)x) dx;$$

$$\beta) \int \frac{x + n + 1}{x^3 + (11-n)x} dx$$

Задача 7. Вычислить с помощью определенного интеграла площадь плоской фигуры, ограниченной в ДСК линиями l_1 и l_2 и выполнить чертежи. Здесь пномер варианта.

№ вари- анта	Уравнения линий
n	$l_1: y = 2nx^2;$ $l_2: y = (n^2 - 8)x + 4n$

Задача 8. Дано дифференциальное уравнение 1-го порядка и точка M. Определить тип дифференциального уравнения. Найти общее решение дифференциального уравнения, уравнение интегральной кривой, проходящей через точку M и уравнения еще 4-х интегральных кривых (любых). Построить все эти кривые в системе координат.

№ варианта	Дифференциальное уравнение	Точка
1	xy' + y = 0	M(-2; 4)
2	$y'(x^2 - 4) = 2xy$	M(0; 3)
3	$\sin^2 x \cdot y' = 1$	$M\left(\frac{\pi}{4};-1\right)$
4	$y' = \sqrt{1 - y^2}$	<i>M</i> (0; 1)
5	$2\sqrt{x}\cdot y'=1$	M(1; 2)
6	$tgx \cdot y' - y = 0$	$M\left(-\frac{\pi}{2};2\right)$

7	$y' \cdot \sqrt{1 - x^2} + x = 0$	M(0; -1)
8	$y' = 3\sqrt[3]{y^2}$	<i>M</i> (0; 1)
9	y'-2(x-1)=0	M(2; 1)
10	xy' = 3y	<i>M</i> (-1; 2)

<u>Задача 9.</u> Дано дифференциальное уравнение 2-го порядка. Определить тип дифференциального уравнения и найти его общее решение, используя метод неопределенных коэффициентов.

№ вари- анта	Дифференциальное уравнение	№ вари- анта	Дифференциальное уравнение
1	$y'' - 2y' + y = e^{-x}(4x^2 + 2)$	6	$y^{\prime\prime} + y^{\prime} = x e^{-x}$
2	$y^{\prime\prime} + 4y = 3\sin x + 5\cos x$	7	$y'' + y = x^2 e^x$
3	$y^{\prime\prime} + y^{\prime} - 2y = 3e^x$	8	$y'' + 2y' + 5y = 17\cos 2x$
4	$y'' + 6y' + 9y = 6\sin 3x$	9	$y'' + 4y' + 4y = e^x(3x + 2)$
5	$y'' + 9y = e^x (10x - 1)$	10	$y^{\prime\prime} - y^{\prime} = x^2$

Задача 10. Дана система линейных дифференциальных уравнений 1-го порядка. Найти общее решение системы методом повышения порядка.

№ вари- анта	Система дифференциальных уравнений	№ вари- анта	Система дифференциальных уравнений
1	$\begin{cases} x' = 4x + 6y \\ y' = 4x + 2y \end{cases}$	6	$\begin{cases} x' = -5x - 4y \\ y' = -2x - 3y \end{cases}$
2	$\begin{cases} x' = 3x + y \\ y' = 8x + y \end{cases}$	7	$\begin{cases} x' = 6x + 3y \\ y' = -8x - 5y \end{cases}$
3	$\begin{cases} x' = 5x + 8y \\ y' = 3x + 3y \end{cases}$	8	$\begin{cases} x' = 3x - 2y \\ y' = 2x + 8y \end{cases}$
4	$\begin{cases} x' = 2x + 8y \\ y' = x + 4y \end{cases}$	9	$\begin{cases} x' = -x + 5y \\ y' = x + 3y \end{cases}$
5	$\begin{cases} x' = 4x - y \\ y' = -x + 4y \end{cases}$	10	$\begin{cases} x' = 7x + 2y \\ y' = 3x + 2y \end{cases}$

СПИСОК ЛИТЕРАТУРЫ

Основная литература

- 1. Письменный, Д. Т. Конспект лекций по высшей математике : [полный курс] / Д. Т. Письменный. 10-е изд., испр.- Москва : Айрис-пресс, 2011. 602, [1] с. : ил. Количество экземпляров в библиотеке: абонемент 212.
- 2. Сборник задач по курсу математического анализа : учеб. пособие / Γ . Н. Берман. [22-е изд., перераб.]. Санкт-Петербург : Профессия, 2005, 2004, 2002, 2003, 2001. 432 с. : ил. Количество экземпляров в библиотеке: абонемент 781.

Дополнительная литература

1. Клетеник, Д.В. Сборник задач по аналитической геометрии : учеб. пособие для вузов / Д. В. Клетеник; под ред. Н. В. Ефимова. - 17-е изд., стер. - Санкт-Петербург : Профессия, 2007, 2003 ; Москва. - 200 с. : ил. Количество экземпляров в библиотеке: абонемент — 378. 2. Данко П. Е. , Попов А. Г., Кожевникова Т. Я., Данко С. П. Высшая математика в упражнениях и задачах: учеб. пособие / П. Е. Данко [и др.]. - 7-е изд., испр. - Москва: Оникс: Мир и Образование, 2008. - 815 с.: ил. Количество экземпляров в библиотеке: абонемент — 30.