МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

АПАТИТСКИЙ ФИЛИАЛ

Методические указания к выполнению лабораторных работ

По дисциплине: Б1.В.02.05 Квантовая механика и квантовая химия
указывается цикл (раздел) ОП, к которому относится дисциплина, название дисциплины
для направления подготовки (специальности) 04.03.01 Химия
код и наименование направления подготовки (специальности)
Неорганическая химия и химия координационных соединений
наименование профиля /специализаций/образовательной программы
Квалификация выпускника, уровень подготовки <u>бакалавр</u> (указывается квалификация (степень) выпускника в соответствии с ФГОС ВО)
(указывается квалификация (степень) выпускника в соответствии с ФІ ОС ВО)
Кафедра - разработчик: химии и строительного материаловедения
название кафедры - разработчика рабочей программы
Разработчик(и) О.Р. Стародуб, доцент, к.х.н.
(ФИО, должность, ученая степень, (звание)

Пояснительная записка

1. Методические указания составлены на основе ФГОС ВО по направлению подготовки 04.03.01 Химия, утвержденного приказом Минобразования и науки РФ 17 июля 2017 года, № 671, учебного плана в составе ОП по направлению подготовки 04.03.01 Химия, профилю «Неорганическая химия и химия координационных соединений».

2. Цели и задачи учебной дисциплины (модуля).

Целью дисциплины (модуля) «Квантовая механика и квантовая химия» является подготовка обучающегося в соответствии с квалификационной характеристикой бакалавра и рабочим учебным планом направления 04.03.01 Химия, что предполагает освоение обучаемыми знаний в области теории движения материи в микромире, когда изучаемые объекты представляют собой электроны, атомы, молекулы и их малые ансамбли, к описанию движения которых не применимы методы классической механики.

Задачей дисциплины является освоение студентами следующих основных понятий:

- особенности поведения частиц в микромире, корпускулярно-волновой дуализм, принцип неопределенности Гейзенберга;
- основные постулаты квантовой механики, предпосылки их появления, несовместимость с принципами классической механики и согласованность обоих подходов в предельном случае;
- уравнение Шредингера как уравнение движения в микромире, способы его решения. Стационарное уравнение Шредингера. Полярные координаты;
- функция состояния системы, вероятностный характер получаемый с её помощью информации;
- понятие операторов квантовой механики. Собственные функции и собственные значения операторов; теория химической связи в молекулах с позиций квантовой теории;
- основные подходы решения квантово-химических задач, включая молекулы химических соединений;
- общие принципы упрощения векового уравнения при решении квантово-химических задач;
- решение квантово-химических задач в тг-приближении простым методом Хюккеля. Порядок химической связи и плотности зарядов на атомах.

3. Планируемые результаты обучения по дисциплине «Квантовая механика и квантовая химия»

Процесс изучения дисциплины «Квантовая механика и квантовая химия» направлен на формирование элементов компетенции в соответствии с ФГОС ВО по направлению подготовки 04.03.01 Химия:

ПК-1-н Способность выбирать и использовать технические средства и методы испытаний для решения исследовательских задач химической направленности, поставленных специалистом более высокой квалификации

Результаты формирования компетенций и планируемые результаты обучения представлены в таблице 1.

No No	Таблица 1 – Планируемые результаты обучения					
	Код компетенции	Компоненты	D			
п/п		компетенции, степень	Результаты обучения			
		их реализации				
1	ПК-1-н	Компоненты	Знать: основные современные			
	Способность	компетенции соотносятся	методы квантовой химии			
	выбирать и	с содержанием	(неэмпирические и			
	использовать	дисциплины и	полуэмпирические методы, теорию			
	технические	компетенция реализуется	функционала плотности), иметь			
	средства и методы	полностью	представления о приближениях и			
	испытаний для		допущениях, использованных при			
	решения		разработке этих методов, иметь			
	исследовательских		представления об ограничениях и			
	задач химической		возможностях разных методов для			
	направленности,		моделирования электронной			
	поставленных		структуры и химических реакций			
	специалистом более		Уметь: определять необходимую			
	высокой		информацию для расчета			
	квалификации		электронной структуры молекул и			
	1 ,		анализировать данные расчетов; ориентироваться в обширной			
			литературе, использующей данные			
			квантово-химических расчетов			
			Владеть: основными понятиями			
			квантово-механической теории;			
			навыками квантово-химических			
			расчетов физико-химических			
			характеристик веществ и квантово-			
			химического моделирования			
			химических реакций.			
			Индикаторы сформированности			
			компетенций в реализуемой			
			части:			
			ПК-1-н-1. Планирует отдельные			
			стадии исследования при наличии			
			общего плана НИР			
			ПК-1-н-2. Готовит элементы			
			документации, проекты планов и			
			программ отдельных этапов НИР			
			ПК-1-н-3. Выбирает технические			
			средства и методы испытаний (из			
			набора имеющихся) для решения			
			поставленных задач НИР			
			ПК-1-н-4. Готовит объекты			
			исследования			

Таблица 2 - Перечень лабораторных работ

1 world 2 11ebe tells throught opins broot			
No	Наименование лабораторных работ	Кол-во	№ темы по
п\п		часов	табл. 4 РП
1	2	3	4
ЛР1	Неэмпирический квантовохимический расчет	4	29
	молекулы.		

Подготовка исходных данных в программе GAMESS и проведение неэмпирического	6	31,32
квантовохимического расчета молекулы.		
Итого:	10	

Рекомендации к выполнению лабораторных работ

8 семестр

Лабораторное задание № 1.

Тема: Неэмпирический квантовохимический расчет молекулы.

В лабораторной работе предлагается провести с помощью программного комплекса **GAMESS** и программного комплекса **ChemOffice2002** неэмпирический квантовохимический расчет молекулы, выбираемой из списка молекул, наиболее интересных с точки зрения специализации студента. Отчет по работе должен состоять из трёх частей, содержащих следующий материал:

- 1. Формулировка цели и задач квантовохимических расчетов. Задача данного расчета в рамках общей задачи.
- 2. Задание исходного строения молекулы.

Группа \$data.

Программа **GAMESS** позволяет задать пробную структуру рассчитываемого соединения несколькими способами, которые сводятся либо к определению декартовых координат всех атомов, составляющих молекулу, либо к использованию так называемых внутренних координат. В последнем случае атомы, пространственное расположение которых уже определено, используются как вспомогательные точки для указания положения других атомов. Наиболее известным способом задания геометрических параметров молекулы с помощью внутренних координат является так называемая Z-матрица. Мы будем работать только с декартовыми координатами

Исходная структура рассчитываемого соединения описывается в группе \$data , имеющей следующий формат (по строкам):	(1 строка, открывается группа).
\$data	
TITLE	(2 строка, содержащая текстовый комментарий).
GROUP NAXIS	(3 строка, в которой определяется точечная группа симметрии. Переменная GROUP определяет вид точечной группы и может принимать символьные значения C1, CS, CI, CN, CNV, CNH, S2N, DN, DNH, DND, T, TD, TH, O, OH. Переменная NAXIS определяет порядок главной оси вращения. Например, точечная группа C 3v обозначается как CNV 3).

(TIVOTO G. OTTO OVO.)	(A armove programmed no poor arrayagy amove
(пустая строка)	(4 строка вводится во всех случаях, кроме
	точечной группы С1. В последнем случае 4
	строка пропускается. Рекомендуется
	использовать значения по умолчанию,
	которые определяют стандартную
	ориентацию молеку-лы в пространстве
	путем выбора стандартного контура
	(Master Frame), т.е. расположения центра
	координат, направление главной оси и т.д.).
(исходная структура, строка на атом)	(5 строка – (N + 4) строка определяют
	положение каж-дого атома N-атомной
	молекулы).
\$end	(завершение группы).

Декартовы координаты.

Способ определения строения молекулы состоит в указании декартовых координат x, y и z для каждого атома молекулы. Данная опция устанавливается командой **COORD=CART** в группе **\$contrl**.

В этом случае формат каждой строки, описывающей атом, в группе \$data имеет вил:

ATOM ZNUC X Y Z

ATOM - символьное или численное обозначение данного атома;

ZNUC - заряд ядра задаваемого атома;

X, **Y**, **Z** - набор декартовых координат. 6

Поскольку *а priori* определить декартовы координаты даже сравнительно простой молекулы затруднительно, этот способ обычно используют, беря координаты атомов из предварительно проведенного расчета данной молекулы другим, например, более простым квантово-химическим методом. В данной лабораторной работе мы работаем с программным комплексом **ChemOffice2002** и в нём с программным пакетом **Chem3D.** С его помощью рассчитываем декартовы координаты заданных молекул и затем вносим полученные данные в исходный файл программного комплекса **GAMESS**

3. Интерпретация результатов расчета проводится по следующим позициям:

1. Зависимость свойств связей молекулы от ее геометрии.

Сравнить геометрию молекулы с геометрией подобных соединений. Оценить зависимость длин связей, зарядов на атомах от геометрии молекулы.

2. Определение положения реакционных центров.

Положение реакционных центров приближенно определяется зарядами на атомах. Привести распределение зарядов на атомах исследуемой молекулы по Малликену и на основании их величин и знаков сделать вывод о наиболее вероятных направлениях атак.

8 семестр

Лабораторное задание № 2.

Тема: Подготовка исходных данных в программе GAMESS и проведение неэмпирического квантовохимического расчета молекулы.

1. Создание исходного файла.

Для работы квантово-химической программы необходимы начальные условия: пробная структура рассчитываемого соединения, его заряд, мультиплетность, а также набор команд, определяющих метод расчета и условия его проведения. Начальные условия определяются пользователем программы, их записывают и сохраняют в файле, который мы назовем исходным файлом. По завершении расчета программа записывает результаты в другой — конечный файл.

Для проведения квантово-химического расчёта с помощью программы GAMESS необходимо создать исходный текстовый файл с расширением .dat. В этом файле в определённой последовательности, описанной ниже, вводят команды, которые будет выполнять программа. Результаты расчета записываются в файл, который, чаще всего, имеет то же имя, что исходный файл, расширение конечного файла может быть .res. Кроме того, в процессе расчета создается ряд промежуточных файлов, важнейший из которых так называемый punch-файл. В нем содержится информация о волновой функции, матрице Гесса, градиентах энергии и т.д. в формате, который можно использовать при подготовке последующих расчетов.

Структура исходного файла.

Исходный файл создается стандартными способами операционной системы. Это текстовый файл, информация в который вводится в произвольном формате с некоторыми ограничениями. При заполнении исходного файла каждая новая строка должна начинаться с пробела, число символов в строке не должно превышать 80.

Содержание исходного файла представляет собой последовательность **групп**, в которых содержаться **ключи** (или команды), отвечающие за то или иное действие программы **GAMESS**. Каждая группа начинается со знака \$, за которым следует не более 6 символов. Имя ключа также содержит не более 6 символов. Структура исходного файла выглядит следующим образом:

\$группа01 ключ01=значение ключ02=значение ключ03=значение ключ04=значение ... \$end \$группа02 ключ01=значение \$end \$группа03 ключ01=значение ключ02=значение ... \$end

и так далее... Каждая группа начинается с новой строки, она может состоять из нескольких строк и должна закрываться признаком конца группы — последовательностью символов **\$end**.

В программе содержится около сотни различных групп. Ниже рассмот-рим только наиболее важные группы, описывающие молекулу, тип волновой функции, базисный набор, контроль стационарных точек и т.д. Если какиелибо ключи данной группы не указаны, им присваиваются значения по умолчанию (default). Если в исходном файле не указывается группа, то все ключи этой группы имеют значения по умолчанию. Ключи могут иметь несколько значений. Ниже для некоторых ключей приводится неполный перечень воз-можных значений. Более полную информацию можно найти в файле-инструкции к программе GAMESS, который поставляется вместе с программой.

Группа \$contrl.

Группа химического контроля. Это группа свободного формата, в которой определяются общие ключи. Наиболее важными из них являются:

- **SCFTYP** ключ, определяющий тип детерминанта Слэтера. Некоторые возможные значения ключа:
 - **=RHF** ограниченный метод Хартри Фока, т.е. закрытая электронная оболочка (значение по умолчанию, *default*);
 - **=UHF** неограниченный метод Хартри Фока, открытая электронная оболочка;
 - **=ROHF** ограниченный метод Хартри Фока для систем с неспаренными электронами.
- **RUNTYP** ключ, отвечающий за тип расчёта. Некоторые возможные значения ключа:
 - **=ENERGY** расчет только полной энергии (*default*);
 - **=GRADIENT** расчет полной энергии и ее первых производных;
 - **=OPTIMIZE** градиентная оптимизация строения молекулы;
 - **=TRUDGE** неградиентная оптимизация строения молекулы;
 - **=SADPOINT** градиентная оптимизация переходных состояний;
 - **=HESSIAN** расчет полной энергии, ее первых и вторых производных, а также термохимические расчеты.
- **EXETYP=RUN** проведение расчета (default);
 - **=СНЕСК** проверка требуемой памяти и правильности ввода команд;
- **ICHARG**= заряд системы атомов (по умолчанию 0, нейтральная молекула).
- **MULT**= мультиплетность системы, равная (2S+1), где S суммарный спин системы (по умолчанию = 1).
- **COORD** - тип системы координат для определения положения атомов.
 - =UNIQUE уникальные координаты (default),
 - **=CART** декартовы координаты;
 - **=ZMT** полярные координаты, или Z-матрица,
- **NZVAR**= число степеней свободы системы. Для нелинейных молекул равно 3N-6, где N- число атомов; для линейных -3N-5. Не используется, если в Z-матрице присутствуют мнимые атомы. Значение по умолчанию = 0 (декартовы координаты).

- **MAXIT**= максимальное число итерационных циклов в процессе самосогласования (по умолчанию = 30).
- **MPLEVL**= порядок теории возмущения Мёллера-Плессе, может принимать значения 0 (*default*), 2 и 4.

Группа \$system.

Эта группа устанавливает контрольную информацию для операций компьютера. Наиболее важные ключи данной группы:

TIMLIM= - ограничение времени расчета, в минутах (default = 600.0).

MWORDS= - максимальный объём оперативной памяти, используемый программой и измеряемый в миллионах машинных слов. Один миллион равен 1024 × 1024 слов, 1 слово = 64 бит.

Группа \$basis.

С помощью этой группы задается стандартный базисный набор.

GBASIS - название базисного набора гауссова типа.

- **=STO** минимальный STO-KG базисный набор, предложенный Дж. Поплом. Значение K задается ключом **NGAUSS** и принимает значения 2, 3, 4, 5, 6. Может быть использован для расчетов молекул, содержащих атомы H Xe;
- =**N21** валентно-расщепленные базисные наборы *M*-21G и *N*-31G
- **=N31 -** Значения M и N задается ключом **NGAUSS**, M=3 (H Xe) или 6 (H Ar), N=4 (H Ne, P Cl,) или 6 (H Ar);
- =**N311** базисный набор 6-311G Дж. Попла тройного расщепления. Ключ **NGAUSS=6** (H - Ne), для Na - Ar используется базис МакЛина-Чандлера (MC);
- **=DZV** базисные наборы Даннинга двойного (**D**) и тройного (**T**)
- **=TZV** расщепления. Могут быть использованы для расчетов молекул, содержащих атомы $H Kr(\mathbf{D})$ и $Zn(\mathbf{T})$;
- **=MNDO** полуэмпирические методы. При выборе этих
- =АМ1 команд отпадает необходимость определения остальных
- **=РМ3** ключей группы **\$basis**.
- NGAUSS= число гауссовых функций (N). Этот параметр указывается только в сочетании с ключами GBASIS=STO, N21, N31 или N311.
- **NDFUNC=** число наборов поляризационных функций *d*-типа, добавленных в базисный набор для тяжёлых атомов. Термин «тяжелый» соответствует Na и последующим атомам для базисов **STO** и **N21**, в остальных случаях начиная с Li. Значение по умолчанию = 0, максимальное значение = 3.
- **NFFUNC=** ключ, определяющий добавление набора поляризационных функций f-типа в базисный набор для атомов Li Cl. Может принимать значения 0 (*default*) и 1.
- **NPFUNC=** число наборов поляризационных функций p-типа, добавленных в базисный набор для атомов H и He. Значение по умолчанию = 0, максимальное значение = 3.

- **DIFFSP**= добавление диффузной *sp*-оболочки для тяжелых атомов: Li F, Na Cl, Ga Br, In I, Tl At. Значение по умолчанию = **.FALSE.** или **.F.** (ложь), другая возможность **.TRUE.** или **.T.** (истина).
- **DIFFS**= аналогично, добавление диффузной *s*-оболочки для атома водорода: **.FALSE.** (*default*) или **.TRUE.**.

Если группа **\$basis** не указывается, набор базисных функций должен быть прописан в группе **\$data** или указан ключ:

EXTFIL=.TRUE., указывающий программе считать базисный набор из внешнего файла. По умолчанию этот ключ = **.FALSE.**.

Группа \$statpt.

Эта группа используется для контроля процесса поиска стационарной точки на поверхности потенциальной энергии (для **RUNTYP=OPTIMIZE** и **SADPOINT**). Наиболее важные ключи в этой группе:

NSTEP= - максимальное число циклов оптимизации (по умолчанию = 20).

HSSEND= - ключ, контролирующий автоматическое решение колебательной задачи после удачно закончившегося поиска геометрических параметров системы. По умолчанию = **.FALSE**..

Задание исходного строения молекулы.

Группа \$data.

Программа GAMESS позволяет задать пробную структуру рассчитываемого соединения несколькими способами, которые сводятся либо к определению декартовых координат всех атомов, составляющих молекулу, либо к использованию так называемых внутренних координат. В последнем случае атомы, пространственное расположение которых уже определено, используются как вспомогательные точки для указания положения других атомов. Наиболее известным способом задания геометрических параметров молекулы с помощью внутренних координат является так называемая Z-матрица. Существует несколько вариантов вида Z-матрицы, наиболее часто используется Z-матрица стиля Gaussian. Мы будем работать только с декартовыми координатами.

Группа \$data берётся из расчётов, выполненных в предыдущем семестре.

- 2. Выполняется расчёт молекулы с помощью программного комплекса GAMESS на основе созданного исходного файла.
- **3.** Проводится сравнение результатов расчета с результатами расчёта, выполненного в предыдущем семестре по следующим позициям:
 - Время расчёта
 - Различие в геометрии молекул и в распределении зарядов на атомах по Малликену.
 - Различие в полученной энергии молекулы.

Список рекомендуемой литературы

Список рекомендуемой литературы					
<u>№</u> п\п	Название учебников, учебных пособий и других источников	Авторы (под ред.)	Издательство	Год издания	
1	2	3	4	5	
Основная:					
1.	Лекции по квантовой механике и квантовой химии: учебное пособие по дисциплине «Квантовая механика и квантовая химия» для студентов специальности 020101.65 Химия»	О.Р. Стародуб	Мурманский государственный технический университет	2012	
	Дополнительная:				
1	Квантовая механика и квантовая химия.	Н.Ф.Степанов	Москва, «Мир», Изд- во Моск. Ун- та	2001	
2	Квантовая механика :учебник http://www.studentlibrary.ru/book/ ISBN9785927507061.html?SSr=0 10134171b106b0b2512518	Ведринский Р.В	Изд-во ЮФУ	2009	
3.	Квантовая механика и квантовая химия: учебное пособие https://e.lanbook.com/book/11363 1	Барановский В.И.	Издательство "Лань"	2019	